4.1.1 本规范采用以概率理论为基础的极限状态设计方法,以可靠指标度量结构构件的可靠度,采用分项系数的设计表达式进行计算。
4.1.2 砌体结构应按承载能力极限状态设计,并满足正常使用极限状态的要求。
4.1.3 砌体结构和结构构件在设计使用年限内及正常维护条件下,必须保持满足使用要求,而不需大修或加固。设计使用年限可按现行国家标准《建筑结构可靠度设计统一标准》GB 50068的有关规定确定。
4. 1.4 根据建筑结构破坏可能产生的后果(危及人的生命、造成经济损失、产生社会影响等)的严重性。建筑结构应按表4.1.4划分为三个安全等级,设计时应根据具体情况适当选用。
表4.1.4 建筑结构的安全等级
注:1 对于特殊的建筑物,其安全等级可根据具体情况另行确定;
2 对抗震设防区的砌体结构设计,应按现行国家标准《建筑抗震设防分类标准》GB 50223根据建筑物重要性区分建筑物类别。
4.1.5 砌体结构按承载能力极限状态设计时,应按下列公式中最不利组合进行计算:
(4.1.5-1)
(4.1.5-2)
式中:γ0——结构重要性系数。对安全等级为一级或设计使用年限为50a以上的结构构件,不应小于1.1;对安全等级为二级或设计使用年限为50a的结构构件,不应小于1.0;对安全等级为三级或设计使用年限为1a~5a的结构构件,不应小于0.9;
γL——结构构件的抗力模型不定性系数。对静力设计,考虑结构设计使用年限的荷载调整系数,设计使用年限为50a,取1.0;设计使用年限为100a,取1.1;
SGK——永久荷载标准值的效应;
SQ1K——在基本组合中起控制作用的一个可变荷载标准值的效应;
SQiK——第i个可变荷载标准值的效应;
R(·)——结构构件的抗力函数;
γQi——第i个可变荷载的分项系数;
ψci——第i个可变荷载的组合值系数。一般情况下应取0.7;对书库、档案库、储藏室或通风机房、电梯机房应取0.9;
f——砌体的强度设计值,f=fk/γf;
fk——砌体的强度标准值,fk=fm—1.645σf;
γf——砌体结构的材料性能分项系数,一般情况下,宜按施工质量控制等级为B级考虑,取γf=1.6;当为C级时,取γf=1.8;当为A级时,取γf=1.5;
fm——砌体的强度平均值,可按本规范附录B的方法确定;
σf——砌体强度的标准差;
ak——几何参数标准值。
注:1 当工业建筑楼面活荷载标准值大于4kN/m2时,式中系数1.4应为1.3;
2
施工质量控制等级划分要求,应符合现行国家标准《砌体结构工程施工质量验收规范》GB 50203的有关规定。
4.1.6 当砌体结构作为一个刚体,需验算整体稳定性时,应按下列公式中最不利组合进行验算:
(4.1.6-1)
(4.1.6-2)
式中:SG1K——起有利作用的永久荷载标准值的效应;
SG2K——起不利作用的永久荷载标准值的效应。
4.1.7 设计应明确建筑结构的用途,在设计使用年限内未经技术鉴定或设计许可,不得改变结构用途、构件布置和使用环境。
条文说明
4.1 设计原则
4.1.1~4.1.5 根据《建筑结构可靠度设计统一标准》GB
50068,结构设计仍采用概率极限状态设计原则和分项系数表达的计算方法。本次修订,根据我国国情适当提高了建筑结构的可靠度水准;明确了结构和结构构件的设计使用年限的含意、确定和选择;并根据建设部关于适当提高结构安全度的指示,在第4.1.5条作了几个重要改变:
1 针对以自重为主的结构构件,永久荷载的分项系数增加了1.35的组合,以改进自重为主构件可靠度偏低的情况;
2
引入了《施工质量控制等级》的概念。
长期以来,我国设计规范的安全度未和施工技术、施工管理水平等挂钩。而实际上它们对结构的安全度影响很大。因此为保证规范规定的安全度,有必要考虑这种影响。发达国家在设计规范中明确地提出了这方面的规定,如欧共体规范、国际标准。我国在学习国外先进管理经验的基础上,并结合我国的实际情况,首先在《砌体工程施工及验收规范》GB
50203—98中规定了砌体施工质量控制等级。它根据施工现场的质保体系、砂浆和混凝土的强度、砌筑工人技术等级方面的综合水平划为A、B、C三个等级。但因当时砌体规范尚未修订,它无从与现行规范相对应,故其规定的A、B、C三个等级,只能与建筑物的重要性程度相对应。这容易引起误解。而实际的内涵是在不同的施工控制水平下,砌体结构的安全度不应该降低,它反映了施工技术、管理水平和材料消耗水平的关系。因此本规范引入了施工质量控制等级的概念,考虑到一些具体情况,砌体规范只规定了B级和C级施工质量控制等级。当采用C级时,砌体强度设计值应乘第3.2.3条的γa,γa=0.89;当采用A级施工质量控制等级时,可将表中砌体强度设计值提高5%。施工质量控制等级的选择主要根据设计和建设单位商定,并在工程设计图中明确设计采用的施工质量控制等级。
因此本规范中的A、B、C三个施工质量控制等级应按《砌体结构工程施工质量验收规范》GB 50203中对应的等级要求进行施工质量控制。
但是考虑到我国目前的施工质量水平,对一般多层房屋宜按B级控制。对配筋砌体剪力墙高层建筑,设计时宜选用B级的砌体强度指标,而在施工时宜采用A级的施工质量控制等级。这样做是有意提高这种结构体系的安全储备。
4.1.6 在验算整体稳定性时,永久荷载效应与可变荷载效应符号相反,而前者对结构起有利作用。因此,若永久荷载分项系数仍取同号效应时相同的值,则将影响构件的可靠度。为了保证砌体结构和结构构件具有必要的可靠度,故当永久荷载对整体稳定有利时,取γG=0.8。本次修订增加了永久荷载控制的组合项。
4.2.1 房屋的静力计算,根据房屋的空间工作性能分为刚性方案、刚弹性方案和弹性方案。设计时,可按表4.2.1确定静力计算方案。
表4.2.1
房屋的静力计算方案
注:1 表中s为房屋横墙间距,其长度单位为“m”;
2
当屋盖、楼盖类别不同或横墙间距不同时,可按本规范第4. 2.7条的规定确定房屋的静力计算方案;
3
对无山墙或伸缩缝处无横墙的房屋,应按弹性方案考虑。
4.2.2 刚性和刚弹性方案房屋的横墙,应符合下列规定:
1
横墙中开有洞口时,洞口的水平截面面积不应超过横墙截面面积的50%;
2 横墙的厚度不宜小于180mm;
3
单层房屋的横墙长度不宜小于其高度,多层房屋的横墙长度不宜小于H/2(H为横墙总高度)。
注:1
当横墙不能同时符合上述要求时,应对横墙的刚度进行验算。如其最大水平位移值umax≤H/4000时,仍可视作刚性或刚弹性方案房屋的横墙;
2
凡符合注1刚度要求的一段横墙或其他结构构件(如框架等),也可视作刚性或刚弹性方案房屋的横墙。
4.2.3 弹性方案房屋的静力计算,可按屋架或大梁与墙(柱)为铰接的、不考虑空间工作的平面排架或框架计算。
4.2.4 刚弹性方案房屋的静力计算,可按屋架、大梁与墙(柱)铰接并考虑空间工作的平面排架或框架计算。房屋各层的空间性能影响系数,可按表4.2.4采用,其计算方法应按本规范附录C的规定采用。
表4.2.4
房屋各层的空间性能影响系数ηi
注:i取1~n,n为房屋的层数。
4.2.5 刚性方案房屋的静力计算,应按下列规定进行:
1
单层房屋:在荷载作用下,墙、柱可视为上端不动铰支承于屋盖,下端嵌固于基础的竖向构件;
2
多层房屋:在竖向荷载作用下,墙、柱在每层高度范围内,可近似地视作两端铰支的竖向构件;在水平荷载作用下,墙、柱可视作竖向连续梁;
3
对本层的竖向荷载,应考虑对墙、柱的实际偏心影响,梁端支承压力Nl到墙内边的距离,应取梁端有效支承长度a0的0.4倍(图4.2.5)。由上面楼层传来的荷载Nu,可视作作用于上一楼层的墙、柱的截面重心处;
图4.2.5
梁端支承压力位置
注:当板支撑于墙上时,板端支承压力Nl到墙内边的距离可取板的实际支承长度a的0.4倍。
4 对于梁跨度大于9m的墙承重的多层房屋,按上述方法计算时,应考虑梁端约束弯矩的影响。可按梁两端固结计算梁端弯矩,再将其乘以修正系数γ后,按墙体线性刚度分到上层墙底部和下层墙顶部,修正系数γ可按下式计算:
(4.2.5)
式中:a——梁端实际支承长度;
h——支承墙体的墙厚,当上下墙厚不同时取下部墙厚,当有壁柱时取hT。
4.2.6 刚性方案多层房屋的外墙,计算风荷载时应符合下列要求:
1
风荷载引起的弯矩,可按下式计算:
(4.2.6)
式中:ω——沿楼层高均布风荷载设计值(kN/m);
Hi——层高(m)。
2 当外墙符合下列要求时,静力计算可不考虑风荷载的影响:
1)
洞口水平截面面积不超过全截面面积的2/3;
2) 层高和总高不超过表4.2.6的规定;
3)
屋面自重不小于0.8kN/m2。
表4.2.6
外墙不考虑风荷载影响时的最大高度
注:对于多层混凝土砌块房屋,当外墙厚度不小于190mm、层高不大于2.8m、总高不大于19.6m、基本风压不大于0.7kN/m2,时,可不考虑风荷载的影响。
4.2.7 计算上柔下刚多层房屋时,顶层可按单层房屋计算,其空间性能影响系数可根据屋盖类别按本规范表4.2.4采用。
4.2.8 带壁柱墙的计算截面翼缘宽度bf,可按下列规定采用:
1
多层房屋,当有门窗洞口时,可取窗间墙宽度;当无门窗洞口时,每侧翼墙宽度可取壁柱高度(层高)的1/3,但不应大于相邻壁柱间的距离;
2
单层房屋,可取壁柱宽加2/3墙高,但不应大于窗间墙宽度和相邻壁柱间的距离;
3
计算带壁柱墙的条形基础时,可取相邻壁柱间的距离。
4.2.9 当转角墙段角部受竖向集中荷载时,计算截面的长度可从角点算起,每侧宜取层高的1/3。当上述墙体范围内有门窗洞口时,则计算截面取至洞边,但不宜大于层高的1/3。当上层的竖向集中荷载传至本层时,可按均布荷载计算,此时转角墙段可按角形截面偏心受压构件进行承载力验算。
条文说明
4.2 房屋的静力计算规定
取消上刚下柔多层房屋的静力计算方案及原附录的计算方法。这是考虑到这种结构存在着显著的刚度突变,在构造处理不当或偶发事件中存在着整体失效的可能性。况且通过适当的结构布置,如增加横墙,可成为符合刚性方案的结构,既经济又安全的砌体结构静力方案。
4.2.5
第3款,计算表明,因屋盖梁下砌体承受的荷载一般较楼盖梁小,承载力裕度较大,当采用楼盖梁的支承长度后,对其承载力影响很小。这样做以简化设计计算。板下砌体的受压和梁下砌体受压是不同的。板下是大面积接触,且板的刚度要比梁的小得多,而所受荷载也要小得多,故板下砌体应力分布要平缓得多。根据《国际标准》ISO
9652—1规定:楼面活荷载不大于5kN/m2计时,偏心距e=0.05(l1—l2)≤h/3。式中l1、l2分别为墙两侧板的跨度,h墙厚。当墙厚小于200mm时,该偏心距应乘以折减系数h/200;当双向板跨比达到1:2时,板的跨度可取短边长的2/3。考虑到我国砌体房屋多年的工程经验和梁传荷载下支承压力方法的一致性原则,则取0.4a是安全的也是对规范的补充。
第4款,即对于梁跨度大于9m的墙承重的多层房屋,应考虑梁端约束弯矩影响的计算。
试验表明上部荷载对梁端的约束随局压应力的增大呈下降趋势,在砌体局压临破坏时约束基本消失。但在使用阶段对于跨度比较大的梁,其约束弯矩对墙体受力影响应予考虑。根据三维有限元分析,a/h=0.75,l=5.4m,上部荷载σ0/fm=0.1、0.2、0.3、0.4时,梁端约束弯矩与按框架分析的梁端弯矩的比值分别为0.28、0.377、0.449、0.511。为了设计方便,将其替换为梁端约束弯矩与梁固端弯矩的比值K,分别为8.3%、12.2%、16.6%、21.4%。为此拟合成公式4.2.5予以反映。
本方法也适用于上下墙厚不同的情况。
4.2.6 根据表4. 2.6所列条件(墙厚240mm)验算表明,由风荷载引起的应力仅占竖向荷载的5%以下,可不考虑风荷载影响。
4.3.1 砌体结构的耐久性应根据表4.3.1的环境类别和设计使用年限进行设计。
表4.3.1 砌体结构的环境类别
4.3.2 设计使用年限为50a时,砌体中钢筋的耐久性选择应符合表4. 3. 2规定。
表4.3.2 砌体中钢筋耐久性选择
注:1 对夹心墙的外叶墙,应采用重镀锌或有等效保护的钢筋;
2
表中的钢筋即为国家现行标准《混凝土结构设计规范》GB 50010和《冷轧带肋钢筋混凝土结构技术规程》JGJ
95等标准规定的普通钢筋或非预应力钢筋。
4.3.3 设计使用年限为50a时,砌体中钢筋的保护层厚度,应符合下列规定:
1
配筋砌体中钢筋的最小混凝土保护层应符合表4.3.3的规定;
2 灰缝中钢筋外露砂浆保护层的厚度不应小于15mm;
3
所有钢筋端部均应有与对应钢筋的环境类别条件相同的保护层厚度;
4
对填实的夹心墙或特别的墙体构造,钢筋的最小保护层厚度,应符合下列规定:
1)用于环境类别1时,应取20mm厚砂浆或灌孔混凝土与钢筋直径较大者;
2)用于环境类别2时,应取20mm厚灌孔混凝土与钢筋直径较大者;
3)采用重镀锌钢筋时,应取20mm厚砂浆或灌孔混凝土与钢筋直径较大者;
4)采用不锈钢筋时,应取钢筋的直径。
表4.3.3 钢筋的最小保护层厚度
注:1 材料中最大氯离子含量和最大碱含量应符合现行国家标准《混凝土结构设计规范》GB
50010的规定;
2
当采用防渗砌体块体和防渗砂浆时,可以考虑部分砌体(含抹灰层)的厚度作为保护层,但对环境类别1、2、3,其混凝土保护层的厚度相应不应小于10mm、15mm和20mm;
3 钢筋砂浆面层的组合砌体构件的钢筋保护层厚度宜比表4.3. 3规定的混凝土保护层厚度数值增加5mm~10mm;
4
对安全等级为一级或设计使用年限为50a以上的砌体结构,钢筋保护层的厚度应至少增加10mm。
4.3.4 设计使用年限为50a时,夹心墙的钢筋连接件或钢筋网片、连接钢板、锚固螺栓或钢筋,应采用重镀锌或等效的防护涂层,镀锌层的厚度不应小于290g/m2;当采用环氯涂层时,灰缝钢筋涂层厚度不应小于290μm,其余部件涂层厚度不应小于450μm。
4.3.5 设计使用年限为50a时,砌体材料的耐久性应符合下列规定:
1
地面以下或防潮层以下的砌体、潮湿房间的墙或环境类别2的砌体,所用材料的最低强度等级应符合表4.3.5的规定:
表4.3.5 地面以下或防潮层以下的砌体、潮湿房间的墙所用材料的最低强度等级
注:1
在冻胀地区,地面以下或防潮层以下的砌体,不宜采用多孔砖,如采用时,其孔洞应用不低于M10的水泥砂浆预先灌实。当采用混凝土空心砌块时,其孔洞应采用强度等级不低于Cb20的混凝土预先灌实;
2 对安全等级为一级或设计使用年限大于50a的房屋,表中材料强度等级应至少提高一级。
2 处于环境类别3~5等有侵蚀性介质的砌体材料应符合下列规定:
1) 不应采用蒸压灰砂普通砖、蒸压粉煤灰普通砖;
2)
应采用实心砖,砖的强度等级不应低于MU20,水泥砂浆的强度等级不应低于M10;
3)
混凝土砌块的强度等级不应低于MU15,灌孔混凝土的强度等级不应低于Cb30,砂浆的强度等级不应低于Mb10;
4)
应根据环境条件对砌体材料的抗冻指标、耐酸、碱性能提出要求,或符合有关规范的规定。
条文说明
4.3 耐久性规定
砌体结构的耐久性包括两个方面,一是对配筋砌体结构构件的钢筋的保护,二是对砌体材料保护。原规范中虽均有反映,但比较分散,而且对砌体耐久性的要求或保护措施相对比较薄弱一些。因此随着人们对工程结构耐久性要求的关注,有必要对砌体结构的耐久性进行增补和完善并单独作为一节。砌体结构的耐久性与钢筋混凝土结构既有相同处但又有一些优势。相同处是指砌体结构中的钢筋保护增加了砌体部分,而比混凝土结构的耐久性好,无筋砌体尤其是烧结类砖砌体的耐久性更好。本节耐久性规定主要根据工程经验并参照国内外有关规范增补的:
1 关于环境类别
环境类别主要根据国际标准《配筋砌体结构设计规范》ISO
9652-3和英国标准BS5628。其分类方法和我国《混凝土结构设计规范》GB 50010很接近。
2
配筋砌体中钢筋的保护层厚度要求,英国规范比美国规范更严,而国际标准有一定灵活性表现在:
1)英国规范认为砖砌体或其他材料具有吸水性,内部允许存在渗流,因此就钢筋的防腐要求而论,砌体保护层几乎起不到防腐作用,可忽略不计。另外砂浆的防腐性能通常较相同厚度的密实混凝土防腐性能差,因此在相同暴露情况下,要求的保护层厚度通常比混凝土截面保护层大。
2)国际标准与英国标准要求相同,但在砌体块体和砂浆满足抗渗性能要求条件下钢筋的保护层可考虑部分砌体厚度。
3)据UBC砌体规范2002版本,其对环境仅有室内正常环境和室外或暴露于地基土中两类,而后者的钢筋保护层,当钢筋直径大于No.5(
=16)不小于2英寸(50.8mm),当不大于No.5时不小于1.5英寸(38.1mm)。在条文解释中,传统的钢筋是不镀锌的,砌体保护层可以延缓钢筋的锈蚀速度,保护层厚度是指从砌体外表面到钢筋最外层的距离。如果横向钢筋围着主筋,则应从箍筋的最外边缘测量。砌体保护层包括砌块、抹灰层、面层的厚度。在水平灰缝中,钢筋保护层厚度是指从钢筋的最外缘到抹灰层外表面的砂浆和面层总厚度。
4)本条的5类环境类别对应情况下钢筋混凝土保护层厚度采用了国际标准的规定,并在环境类别1~3时给出了采用防渗块材和砂浆时混凝土保护的低限值,并参照国外规范规定了某些钢筋的防腐镀(涂)层的厚度或等效的保护。随着新防腐材料或技术的发展也可采用性价比更好、更节能环保的钢筋防护材料。
5)砌体中钢筋的混凝土保护层厚度要求基本上同混凝土规范,但适用的环境条件也根据砌体结构复合保护层的特点有所扩大。
3 无筋砌体
无筋高强度等级砖石结构经历数百年和上千年考验其耐久性是不容置疑的。对非烧结块材、多孔块材的砌体处于冻胀或某些侵蚀环境条件下其耐久性易于受损,故提高其砌体材料的强度等级是最有效和普遍采用的方法。
地面以下或防潮层以下的砌体采用多孔砖或混凝土空心砌块时,应将其孔洞预先用不低于M10的水泥砂浆或不低于Cb20的混凝土灌实,不应随砌随灌,以保证灌孔混凝土的密实度及质量。
鉴于全国范围内的蒸压灰砂砖、蒸压粉煤灰砖等蒸压硅酸盐砖的制砖工艺、制造设备等有着较大的差异,砖的品质不尽一致;又根据国家现行的材料标准,本次修订规定,环境类别为3~5等有侵蚀性介质的情况下,不应采用蒸压灰砂砖和蒸压粉煤灰砖。
5.1 受压构件
5.2 局部受压
5.3 轴心受拉构件
5.4
受弯构件
5.5 受剪构件
5.1.1 受压构件的承载力,应符合下式的要求:
N ≤φfA (5.1.1)
式中:N——轴向力设计值;
φ——高厚比β和轴向力的偏心距e对受压构件承载力的影响系数;
f——砌体的抗压强度设计值;
A——截面面积。
注:1
对矩形截面构件,当轴向力偏心方向的截面边长大于另一方向的边长时,除按偏心受压计算外,还应对较小边长方向,按轴心受压进行验算;
2
受压构件承载力的影响系数φ,可按本规范附录D的规定采用;
3
对带壁柱墙,当考虑翼缘宽度时,可按本规范第4.2.8条采用。
5.1.2 确定影响系数φ时,构件高厚比β应按下列公式计算:
对矩形截面 β=γβ(H0/h) (5.1.2-1)
对T形截面β=γβ(H0/hT) (5.1.2-2)
式中:γβ——不同材料砌体构件的高厚比修正系数,按表5.1.2采用;
H0——受压构件的计算高度,按本规范表5.1.3确定;
h——矩形截面轴向力偏心方向的边长,当轴心受压时为截面较小边长;
hT——T形截面的折算厚度,可近似按3.5i计算,i为截面回转半径。
表5.1.2 高厚比修正系数γβ
注:对灌孔混凝土砌块砌体,γβ取1.0。
5.1.3
受压构件的计算高度H0,应根据房屋类别和构件支承条件等按表5.1.3采用。表中的构件高度H,应按下列规定采用:
1
在房屋底层,为楼板顶面到构件下端支点的距离。下端支点的位置,可取在基础顶面。当埋置较深且有刚性地坪时,可取室外地面下500mm处;
2
在房屋其他层,为楼板或其他水平支点间的距离;
3
对于无壁柱的山墙,可取层高加山墙尖高度的1/2;对于带壁柱的山墙可取壁柱处的山墙高度。
表5.1.3 受压构件的计算高度H0
注:
1
表中Hu为变截面柱的上段高度;Hl为变截面柱的下段高度;
2 对于上端为自由端的构件,H0=2H;
3
独立砖柱,当无柱间支撑时,柱在垂直排架方向的H0应按表中数值乘以1.25后采用;
4 s为房屋横墙间距;
5
自承重墙的计算高度应根据周边支承或拉接条件确定。
5.1.4
对有吊车的房屋,当荷载组合不考虑吊车作用时,变截面柱上段的计算高度可按本规范表5.1.3规定采用;变截面柱下段的计算高度,可按下列规定采用:
1
当Hu/H≤1/3时,取无吊车房屋的H0;
2
当1/3<Hu/H<1/2时,取无吊车房屋的H0乘以修正系数,修正系数μ可按下式计算:
μ=1.3—0.3Iu/Il (5.1.4)
式中:Iu——变截面柱上段的惯性矩;
Il——变截面柱下段的惯性矩。
3 当Hu/H≥1/2时,取无吊车房屋的H0。但在确定β值时,应采用上柱截面。
注:本条规定也适用于无吊车房屋的变截面柱。
5.1.5 按内力设计值计算的轴向力的偏心距e不应超过0.6y。y为截面重心到轴向力所在偏心方向截面边缘的距离。
条文说明
5.1 受压构件
5.1.1、5.1.5
无筋砌体受压构件承载力的计算,具有概念清楚、方便技术的特点,即:
1
轴向力的偏心距按荷载设计值计算。在常遇荷载情况下,直接采用其设计值代替标准值计算偏心距,由此引起承载力的降低不超过6%。
2
承载力影响系数φ的公式,不仅符合试验结果,且计算简化。
综合上述1和2的影响,新规范受压构件承载力与原规范的承载力基本接近,略有下调。
3
计算公式按附加偏心距分析方法建立,与单向偏心受压构件承载力的计算公式相衔接,并与试验结果吻合较好。湖南大学48根短柱和30根长柱的双向偏心受压试验表明,试验值与本方法计算值的平均比值,对于短柱为1.236,长柱为1.329,其变异系数分别为0.103和0.163。而试验值与苏联规范计算值的平均比值,对于短柱为1.439,对于长柱为1.478,其变异系数分别为0.163和0.225。此外,试验表明,当eb>0.3b和eh>0.3h时,随着荷载的增加,砌体内水平裂缝和竖向裂缝几乎同时产生,甚至水平裂缝较竖向裂缝出现早,因而设计双向偏心受压构件时,对偏心距的限值较单向偏心受压时偏心距的限值规定得小些是必要的。分析还表明,当一个方向的偏心率(如eh/h)不大于另一个方向的偏心率(如eh/h)的5%时,可简化按另一方向的单向偏心受压(如eh/h)计算,其承载力的误差小于5%。
5.2.1 砌体截面中受局部均匀压力时的承载力,应满足下式的要求:
Nl≤γfAl (5.2.1)
式中:Nl——局部受压面积上的轴向力设计值;
γ——砌体局部抗压强度提高系数;
f——砌体的抗压强度设计值,局部受压面积小于0.3m2,可不考虑强度调整系数γa的影响;
Al——局部受压面积。
5.2.2 砌体局部抗压强度提高系数γ,应符合下列规定:
1
γ可按下式计算:
(5.2.2)
式中:A0—— 影响砌体局部抗压强度的计算面积。
2
计算所得γ值,尚应符合下列规定:
1)在图5. 2.2(a)的情况下,γ≤2.5;
2)在图5.2.2(b)的情况下,γ≤2.0;
3)在图5.2.2(c)的情况下,γ≤1.5;
4)在图5.
2.2(d)的情况下,γ≤1.25;
5)按本规范第6.2.13条的要求灌孔的混凝土砌块砌体,在1)、2)款的情况下,尚应符合γ≤1.5。未灌孔混凝土砌块砌体,γ=1.0;
6)对多孔砖砌体孔洞难以灌实时,应按γ=1.0取用;当设置混凝土垫块时,按垫块下的砌体局部受压计算。
图5.2.2 影响局部抗压强度的面积A0
5.2.3 影响砌体局部抗压强度的计算面积,可按下列规定采用:
1
在图5.2.2(a)的情况下,A0 =(a + c + h)h;
2 在图5.2.2(b)的情况下,A0 =(b + 2h)h;
3
在图5.2.2(c)的情况下,A0 =(a + h)h + (b +h1—h)h1;
4 在图5.2.2(d)的情况下,A0 =(a +
h)h;
式中:a、b——矩形局部受压面积Al的边长;
h、h1——墙厚或柱的较小边长,墙厚;
c——矩形局部受压面积的外边缘至构件边缘的较小距离,当大于h时,应取为h。
5.2.4 梁端支承处砌体的局部受压承载力,应按下列公式计算:
式中:ψ——上部荷载的折减系数,当A0/
Al大于或等于3时,应取ψ等于0;
N0——局部受压面积内上部轴向力设计值(N);
Nl——梁端支承压力设计值(N);
σ0——上部平均压应力设计值(N/mm2);
η——梁端底面压应力图形的完整系数,应取0.7,对于过梁和墙梁应取1.0;
a0——梁端有效支承长度(mm);当a0大于a时,应取a0等于a,a为梁端实际支承长度(mm);
b——梁的截面宽度(mm);
hc——梁的截面高度(mm);
f——砌体的抗压强度设计值(MPa)。
5.2. 5 在梁端设有刚性垫块时的砌体局部受压,应符合下列规定:
1
刚性垫块下的砌体局部受压承载力,应按下列公式计算:
N0 +Nl≤φγ1f Ab (5.2.5-1)
N0=σ0Ab (5.2.5-2)
Ab=abbb (5.2.5-3)
式中:N0——垫块面积Ab内上部轴向力设计值(N);
φ——垫块上N0与Nl合力的影响系数,应取β小于或等于3,按第5.1.1条规定取值;
γ1——垫块外砌体面积的有利影响系数,γ1应为0.8γ,但不小于1.0。γ为砌体局部抗压强度提高系数,按公式(5.2.2)以Ab代替Al计算得出;
Ab——垫块面积(mm2);
ab——垫块伸入墙内的长度(mm);
bb——垫块的宽度(mm)。
2 刚性垫块的构造,应符合下列规定:
1)
刚性垫块的高度不应小于180mm,自梁边算起的垫块挑出长度不应大于垫块高度tb;
2)
在带壁柱墙的壁柱内设刚性垫块时(图5.2.5),其计算面积应取壁柱范围内的面积,而不应计算翼缘部分,同时壁柱上垫块伸入翼墙内的长度不应小于120mm;
3) 当现浇垫块与梁端整体浇筑时,垫块可在梁高范围内设置。
图5.2.5 壁柱上设有垫块时梁端局部受压
3 梁端设有刚性垫块时,垫块上Nl作用点的位置可取梁端有效支承长度a0的0.4倍。a0应按下式确定:
(5.2.5-4)
式中:δ1——刚性垫块的影响系数,可按表5. 2.5采用。
表5.2.5 系数δ1值表
注:表中其间的数值可采用插入法求得。
5.2.6 梁下设有长度大于πh0 的垫梁时,垫梁上梁端有效支承长度a0可按公式(5. 2. 5—4)计算。垫梁下的砌体局部受压承载力,应按下列公式计算:
N0 +Nl≤2.4δ2fbbh0 (5.2.6-1)
N0=πbbh0σ0/2 (5.2.6-2)
(5.2.6-3)
式中:N0——垫梁上部轴向力设计值(N);
bb——
垫梁在墙厚方向的宽度(mm);
δ2——垫梁底面压应力分布系数,当荷载沿墙厚方向均匀分布时可取1.0,不均匀分布时可取0.8;
h0——垫梁折算高度(mm);
Ec、Ic ——分别为垫梁的混凝土弹性模量和截面惯性矩;
E——砌体的弹性模量;
h——墙厚(mm)。
图5.2.6 垫梁局部受压
条文说明
5.2 局部受压
5.2.4 关于梁端有效支承长度a0的计算公式,规范提供了 和简化公式 ,如果前式中tanθ取1/78,则也成了近似公式,而且tanθ取为定值后反而与试验结果有较大误差。考虑到两个公式计算结果不一样,容易在工程应用上引起争端,为此规范明确只列后一个公式。这在常用跨度梁情况下和精确公式误差约为15%,不致影响局部受压安全度。
5.2.5
试验和有限元分析表明,垫块上表面a0较小,这对于垫块下局压承载力计算影响不是很大(有垫块时局压应力大为减小),但可能对其下的墙体受力不利,增大了荷载偏心距,因此有必要给出垫块上表面梁端有效支承长度a0计算方法。根据试验结果,考虑与现浇垫块局部承载力相协调,并经分析简化也采用公式(5.2.4-5)的形式,只是系数另外作了具体规定。
对于采用与梁端现浇成整体的刚性垫块与预制刚性垫块下局压有些区别,但为简化计算,也可按后者计算。
5.2.6
梁搁置在圈梁上则存在出平面不均匀的局部受压情况,而且这是大多数的受力状态。经过计算分析考虑了柔性垫梁不均匀局压情况,给出δ2=0.8的修正系数。
此时a0可近似按刚性垫块情况计算。
5.3.1 轴心受拉构件的承载力,应满足下式的要求:
Nt≤ftA (5.3.1)
式中:Nt——轴心拉力设计值;
ft——砌体的轴心抗拉强度设计值,应按表3.2.2采用。
5.4.1 受弯构件的承载力,应满足下式的要求:
M≤ftmW (5.4.1)
式中:M——弯矩设计值;
ftm——砌体弯曲抗拉强度设计值,应按表3.2.2采用;
W——截面抵抗矩。
5.4.2 受弯构件的受剪承载力,应按下列公式计算:
V≤fvbz
(5.4.2-1)
z=I/S (5.4.2-2)
式中:V——剪力设计值;
fv——砌体的抗剪强度设计值,应按表3.2.2采用;
b——截面宽度;
z——内力臂,当截面为矩形时取z等于2h/3(h为截面高度);
I——截面惯性矩;
S——截面面积矩。
5.5.1 沿通缝或沿阶梯形截面破坏时受剪构件的承载力,应按下列公式计算:
V≤(fv+αμσ0)A (5.5.1-1)
当γG=1.2时
μ=0.26—0.082σ0/f (5.5.1-2)
当γG=1.35时
μ=0.23—0.065σ0/f (5.5.1-3)
式中:V——剪力设计值;
A——水平截面面积;
fv——砌体抗剪强度设计值,对灌孔的混凝土砌块砌体取fvg;
α——修正系数;当γG=1.2时,砖(含多孔砖)砌体取0.60,混凝土砌块砌体取0.64;当γG=1.35时,砖(含多孔砖)砌体取0.64,混凝土砌块砌体取0.66;
μ—— 剪压复合受力影响系数;
f——砌体的抗压强度设计值;
σ0——永久荷载设计值产生的水平截面平均压应力,其值不应大于0.8f。
条文说明
5.5 受剪构件
5.5.1
根据试验和分析,砌体沿通缝受剪构件承载力可采用复合受力影响系数的剪摩理论公式进行计算。
1
公式(5.5.1-1)~公式(5.5.1-3)适用于烧结的普通砖、多孔砖、蒸压的灰砂砖和粉煤灰砖以及混凝土砌块等多种砌体构件水平抗剪计算。该式系由重庆建筑大学在试验研究基础上对包括各类砌体的国内19项试验数据进行统计分析的结果。此外,因砌体竖缝抗剪强度很低,可将阶梯形截面近似按其水平投影的水平截面来计算。
2
公式(5.5.1)的模式系基于剪压复合受力相关性的两次静力试验,包括M2.5、M5.0、M7.5和M10等四种砂浆与MU10页岩砖共231个数据统计回归而得。此相关性亦为动力试验所证实。研究结果表明:砌体抗剪强度并非如摩尔和库仑两种理论随σ0/fm的增大而持续增大,而是在σ0/fm=0~0.6区间增长逐步减慢;而当σ0/fm>0.6后,抗剪强度迅速下降,以致σ0/fm=1.0时为零。整个过程包括了剪摩、剪压和斜压等三个破坏阶段与破坏形态。当按剪摩公式形式表达时,其剪压复合受力影响系数μ非定值而为斜直线方程,并适用于σ0/fm=0~0.8的近似范围。
3
根据国内19份不同试验共120个数据的统计分析,实测抗剪承载力与按有关公式计算值之比值的平均值为0.960,标准差为0.220,具有95%保证率的统计值为0.598(≈0.6)。又取γ1=1.6而得出(5.5.1)公式系列。
4
式中修正系数α系通过对常用的砖砌体和混凝土空心砌块砌体,当用于四种不同开间及楼(屋)盖结构方案时可能导致的最不利承重墙,采用(5.5.1)公式与抗震设计规范公式抗剪强度比较分析而得出的,并根据γG=1.2和1.35两种荷载组合以及不同砌体类别而取用不同的α值。引入α系数意在考虑试验与工程实验的差异,统计数据有限以及与现行两本规范衔接过渡,从而保持大致相当的可靠度水准。
5
简化公式中σ0定义为永久荷载设计值引起的水平截面压应力。根据不同的荷载组合而有与γG=1.2和1.35相应的(5.5.1-2)及(5.5.1-3)等不同μ值计算公式。
6.1.1 墙、柱的高厚比应按下式验算:
β=H0/h≤μ1μ2 [β](6.1.1)
式中:H0——墙、柱的计算高度;
h——墙厚或矩形柱与H0相对应的边长;
μ1——自承重墙允许高厚比的修正系数;
μ2——有门窗洞口墙允许高厚比的修正系数:
[β]——墙、柱的允许高厚比,应按表6.1.1采用。
注:1
墙、柱的计算高度应按本规范第5.1.3条采用;
2
当与墙连接的相邻两墙间的距离s≤μ1μ2[β]h时,墙的高度可不受本条限制;
3
变截面柱的高厚比可按上、下截面分别验算,其计算高度可按第5.1.1条的规定采用。验算上柱的高厚比时,墙、柱的允许高厚比可按表6.1.1的数值乘以1.3后采用。
表6.1.1 墙、柱的允许高厚比[β]值
注:1 毛石墙、柱的允许高厚比应按表中数值降低20%;
2
带有混凝土或砂浆面层的组合砖砌体构件的允许高厚比,可按表中数值提高20%,但不得大于28;
3
验算施工阶段砂浆尚未硬化的新砌砌体构件高厚比时,允许高厚比对墙取14,对柱取11。
6.1.2 带壁柱墙和带构造柱墙的高厚比验算,应按下列规定进行:
1
按公式(6.1.1)验算带壁柱墙的高厚比,此时公式中h应改用带壁柱墙截面的折算厚度hT,在确定截面回转半径时,墙截面的翼缘宽度,可按本规范第4.2.8条的规定采用;当确定带壁柱墙的计算高度H0时,s应取与之相交相邻墙之间的距离。
2
当构造柱截面宽度不小于墙厚时,可按公式(6.1.1)验算带构造柱墙的高厚比,此时公式中h取墙厚;当确定带构造柱墙的计算高度H0时,s应取相邻横墙间的距离;墙的允许高厚比[β]可乘以修正系数μc,μc可按下式计算:
μc=1+γ(bc/l) (6.1.2)
式中:γ——系数。对细料石砌体,γ=0;对混凝土砌块、混凝土多孔砖、粗料石、毛料石及毛石砌体,γ=1.0;其他砌体,γ=1.5;
bc——构造柱沿墙长力方向的宽度;
l——构造柱的间距。
当bc/l>0.25时取bc/l=0.25,当bc/l<
0.05时取bc/l=0
注:考虑构造柱有利作用的高厚比验算不适用于施工阶段。
3
按公式(6.1.1)验算壁柱间墙或构造柱间墙的高厚比时,s应取相邻壁柱间或相邻构造柱间的距离。设有钢筋混凝土圈梁的带壁柱墙或带构造柱墙,当b/s≥1/30时,圈梁可视作壁柱间墙或构造柱间墙的不动铰支点(b为圈梁宽度)。当不满足上述条件且不允许增加圈梁宽度时,可按墙体平面外等刚度原则增加圈梁高度,此时,圈梁仍可视为壁柱间墙或构造柱间墙的不动铰支点。
6.1.3
厚度不大于240mm的自承重墙,允许高厚比修正系数μ1,应按下列规定采用:
1
墙厚为240mm时,μ1取1.2;墙厚为90mm时,μ1取1.5;当墙厚小于240mm且大于90mm时,μ1按插入法取值。
2
上端为自由端墙的允许高厚比,除按上述规定提高外,尚可提高30%。
3
对厚度小于90mm的墙。当双面采用不低于M10的水泥砂浆抹面,包括抹面层的墙厚不小于90mm时,可按墙厚等于90mm验算高厚比。
6.1.4 对有门窗洞口的墙,允许高厚比修正系数,应符合下列要求:
1
允许高厚比修正系数,应按下式计算:
μ2=1—0.4(bs/s) (6.1.4)
式中:bs——在宽度s范围内的门窗洞口总宽度;
s——相邻横墙或壁柱之间的距离。
2
当按公式(6.1.4)计算的μ2的值小于0.7时,μ2取0.7;当洞口高度等于或小于墙高的1/5时,μ2取1.0。
3
当洞口高度大于或等于墙高的4/5时,可按独立墙段验算高厚比。
条文说明
6.1 墙、柱的高厚比验算
6.1.1 由于配筋砌体的使用越来越普遍,本次修订增加了配筋砌体的内容,因此本节也相应增加了配筋砌体高厚比的限值。由于配筋砌体的整体性比无筋砌体好,刚度较无筋砌体大,因此在无筋砌体高厚比最高限值为28的基础上作了提高,配筋砌体高厚比最高限值为30。
6.1.2
墙中设混凝土构造柱时可提高墙体使用阶段的稳定性和刚度,设混凝土构造柱墙在使用阶段的允许高厚比提高系数μc,是在对设混凝土构造柱的各种砖墙、砌块墙和石砌墙的整体稳定性和刚度进行分析后提出的偏下限公式。为与组合砖墙承载力计算相协调,规定bc/l>0.25(即l/bc<4时取l/bc=4);当bc/l<0.05(即l/bc>20)时,表明构造柱间距过大,对提高墙体稳定性和刚度作用已很小。
由于在施工过程中大多是先砌筑墙体后浇筑构造柱,应注意采取措施保证设构造柱墙在施工阶段的稳定性。
对壁柱间墙或带构造柱墙的高厚比验算,是为了保证壁柱间墙和带构造柱墙的局部稳定。如高厚比验算不能满足公式(6.1.1)要求时,可在墙中设置钢筋混凝土圈梁。当圈梁宽度b与相邻壁柱间或相邻构造柱间的距离s的比值b/s≥1/30时,圈梁可视作不动铰支点。当相邻壁柱间的距离s较大,为满足上述要求。圈梁宽度b<s/30时,可按等刚度原则增加圈梁高度。
6.1.3 用厚度小于90mm的砖或块材砌筑的隔墙,当双面用较高强度等级的砂浆抹灰时,经部分地区工程实践证明,其稳定性满足使用要求。本次修订时增加了对于厚度小于90mm的墙,当抹灰层砂浆强度等级等于或大于M5时,包括抹灰层的墙厚达到或超过90mm时,可按h=90mm验算高厚比的规定。
6.1.4 对有门窗洞口的墙[β]的修正系数μ2,系根据弹性稳定论并参照实践经验拟定的。根据推导,μ2尚与门窗高度有关,按公式(6.1.4)算得的μ2,约相当于门窗洞高为墙高2/3时的数值。当洞口高度等于或小于墙高1/5时,可近似采用μ2等于1.0。当洞口高度大于或等于墙高的4/5时,门窗洞口墙的作用已较小。因此,在本次修编中,对当洞口高度大于或等于墙高的4/5时,作了较严格的要求,按独立墙段验算高厚比。这在某些仓库建筑中会遇到这种情况。
6.2.1
预制钢筋混凝土板在混凝土圈梁上的支承长度不应小于80mm,板端伸出的钢筋应与圈梁可靠连接,且同时浇筑;预制钢筋混凝土板在墙上的支承长度不应小于100mm,并应按下列方法进行连接:
1 板支承于内墙时,板端钢筋伸出长度不应小于70mm,且与支座处沿墙配置的纵筋绑扎,用强度等级不应低于C25的混凝土浇筑成板带;
2
板支承于外墙时,板端钢筋伸出长度不应小于100mm,且与支座处沿墙配置的纵筋绑扎,并用强度等级不应低于C25的混凝土浇筑成板带;
3
预制钢筋混凝土板与现浇板对接时,预制板端钢筋应伸入现浇板中进行连接后,再浇筑现浇板。
6.2.2 墙体转角处和纵横墙交接处应沿竖向每隔400mm~500mm设拉结钢筋,其数量为每120mm墙厚不少于1根直径6mm的钢筋;或采用焊接钢筋网片,埋入长度从墙的转角或交接处算起,对实心砖墙每边不小于500mm,对多孔砖墙和砌块墙不小于700mm。
6.2.3 填充墙、隔墙应分别采取措施与周边主体结构构件可靠连接,连接构造和嵌缝材料应能满足传力、变形、耐久和防护要求。
6.2.4 在砌体中留槽洞及埋设管道时,应遵守下列规定:
1
不应在截面长边小于500mm的承重墙体、独立柱内埋设管线;
2
不宜在墙体中穿行暗线或预留、开凿沟槽,当无法避免时应采取必要的措施或按削弱后的截面验算墙体的承载力。
注:对受力较小或未灌孔的砌块砌体,允许在墙体的竖向孔洞中设置管线。
6.2.5
承重的独立砖柱截面尺寸不应小于240mm×370mm。毛石墙的厚度不宜小于350mm,毛料石柱较小边长不宜小于400mm。
注:当有振动荷载时,墙、柱不宜采用毛石砌体。
6.2.6
支承在墙、柱上的吊车梁、屋架及跨度大于或等于下列数值的预制梁的端部,应采用锚固件与墙、柱上的垫块锚固:
1 对砖砌体为9m;
2
对砌块和料石砌体为7.2m。
6.2.7
跨度大于6m的屋架和跨度大于下列数值的梁,应在支承处砌体上设置混凝土或钢筋混凝土垫块;当墙中设有圈梁时,垫块与圈梁宜浇成整体。
1
对砖砌体为4.8m;
2 对砌块和料石砌体为4.2m;
3 对毛石砌体为3.9m。
6.2.8
当梁跨度大于或等于下列数值时,其支承处宜加设壁柱,或采取其他加强措施:
1
对240mm厚的砖墙为6m;对180mm厚的砖墙为4.8m;
2 对砌块、料石墙为4.8m。
6.2.9 山墙处的壁柱或构造柱宜砌至山墙顶部,且屋面构件应与山墙可靠拉结。
6.2.10 砌块砌体应分皮错缝搭砌,上下皮搭砌长度不应小于90mm。当搭砌长度不满足上述要求时,应在水平灰缝内设置不小于2根直径不小于4mm的焊接钢筋网片(横向钢筋的间距不应大于200mm,网片每端应伸出该垂直缝不小于300mm)。
6.2.11 砌块墙与后砌隔墙交接处,应沿墙高每400mm在水平灰缝内设置不少于2根直径不小于4mm、横筋间距不应大于200mm的焊接钢筋网片(图6.2.11)。
图6.2.11
砌块墙与后砌隔墙交接处钢筋网片
1 砌块墙;2 焊接钢筋网片;3 后砌隔墙
6.2.12 混凝土砌块房屋,宜将纵横墙交接处,距墙中心线每边不小于300mm范围内的孔洞,采用不低于Cb20混凝土沿全墙高灌实。
6.2.13
混凝土砌块墙体的下列部位,如未设圈梁或混凝土垫块,应采用不低于Cb20混凝土将孔洞灌实:
1
搁栅、檩条和钢筋混凝土楼板的支承面下,高度不应小于200mm的砌体;
2
屋架、梁等构件的支承面下,长度不应小于600mm,高度不应小于600mm的砌体;
3
挑梁支承面下,距墙中心线每边不应小于300mm,高度不应小于600mm的砌体。
条文说明
6.2 一般构造要求
6.2.1
本条是强制性条文,汶川地震灾害的经验表明,预制钢筋混凝土板之间有可靠连接,才能保证楼面板的整体作用,增加墙体约束,减小墙体竖向变形,避免楼板在较大位移时坍塌。
该条是保整结构安全与房屋整体性的主要措施之一,应严格执行。
6.2.2 工程实践表明,墙体转角处和纵横墙交接处设拉结钢筋是提高墙体稳定性和房屋整体性的重要措施之一。该项措施对防止墙体温度或干缩变形引起的开裂也有一定作用。调查发现,一些开有大(多)孔洞的块材墙体,其设于墙体灰缝内的拉结钢筋大多放到了孔洞处,严重影响了钢筋的拉结。研究表明,由于多孔砖孔洞的存在,钢筋在多孔砖砌体灰缝内的锚固承载力小于同等条件下在实心砖砌体灰缝内的锚固承载力。根据试验数据和可靠性分析,对于孔洞率不大于30%的多孔砖,墙体水平灰缝拉结筋的锚固长度应为实心砖墙体的1.4倍。为保障墙体的整体性能与安全,特制定此条文,并将其定为强制性条文。
6.2.4 在砌体中留槽及埋设管道对砌体的承载力影响较大,故本条规定了有关要求。
6.2.6 同2001规范相应条文关于梁下不同材料支承墙体时的规定。
6.2.8 对厚度小于或等于240mm的墙,当梁跨度大于或等于本条规定时,其支承处宜加设壁柱。如设壁柱后影响房间的使用功能。也可采用配筋砌体或在墙中设钢筋混凝土柱等措施对墙体予以加强。
6.2.11 本条根据工程实践将砌块墙与后砌隔墙交接处的拉结钢筋网片的构造具体化,并加密了该网片沿墙高设置的间距(400mm)。
6.2.12 为增强混凝土砌块房屋的整体性和抗裂能力和工程实践经验提出了本规定。为保证灌实质量,要求其坍落度为160mm~200mm的专用灌孔混凝土(Cb)。
6.2.13 混凝土小型砌块房屋在顶层和底层门窗洞口两边易出现裂缝,规定在顶层和底层门窗洞口两边200mm范围内的孔洞用混凝土灌实,为保证灌实质量,要求混凝土坍落度为160mm~200mm。
6.3.1 框架填充墙墙体除应满足稳定要求外,尚应考虑水平风荷载及地震作用的影响。地震作用可按现行国家标准《建筑抗震设计规范》GB 50011中非结构构件的规定计算。
6.3.2 在正常使用和正常维护条件下,填充墙的使用年限宜与主体结构相同,结构的安全等级可按二级考虑。
6.3.3 填充墙的构造设计,应符合下列规定:
1
填充墙宜选用轻质块体材料,其强度等级应符合本规范第3.1.2条的规定;
2 填充墙砌筑砂浆的强度等级不宜低于M5(Mb5、Ms5);
3 填充墙墙体墙厚不应小于90mm;
4 用于填充墙的夹心复合砌块,其两肢块体之间应有拉结。
6.3.4
填充墙与框架的连接,可根据设计要求采用脱开或不脱开方法。有抗震设防要求时宜采用填充墙与框架脱开的方法。
1
当填充墙与框架采用脱开的方法时,宜符合下列规定:
1)填充墙两端与框架柱,填充墙顶面与框架梁之间留出不小于20mm的间隙;
2)填充墙端部应设置构造柱,柱间距宜不大于20倍墙厚且不大于4000mm,柱宽度不小于100mm。柱竖向钢筋不宜小于 10,箍筋宜为
5,竖向间距不宜大于400mm。竖向钢筋与框架梁或其挑出部分的预埋件或预留钢筋连接,绑扎接头时不小于30d,焊接时(单面焊)不小于10d(d为钢筋直径)。柱顶与框架梁(板)应预留不小于15mm的缝隙,用硅酮胶或其他弹性密封材料封缝。当填充墙有宽度大于2100mm的洞口时,洞口两侧应加设宽度不小于50mm的单筋混凝土柱;
3)填充墙两端宜卡入设在梁、板底及柱侧的卡口铁件内,墙侧卡口板的竖向间距不宜大于500mm,墙顶卡口板的水平间距不宜大于1500mm;
4)墙体高度超过4m时宜在墙高中部设置与柱连通的水平系梁。水平系梁的截面高度不小于60mm。填充墙高不宜大于6m;
5)填充墙与框架柱、梁的缝隙可采用聚苯乙烯泡沫塑料板条或聚氨酯发泡材料充填,并用硅酮胶或其他弹性密封材料封缝;
6)所有连接用钢筋、金属配件、铁件、预埋件等均应作防腐防锈处理,并应符合本规范第4. 3节的规定。嵌缝材料应能满足变形和防护要求。
2 当填充墙与框架采用不脱开的方法时,宜符合下列规定:
1)沿柱高每隔500mm配置2根直径6mm的拉结钢筋(墙厚大于240mm时配置3根直径6mm),钢筋伸入填充墙长度不宜小于700mm,且拉结钢筋应错开截断,相距不宜小于200mm。填充墙墙顶应与框架梁紧密结合。顶面与上部结构接触处宜用一皮砖或配砖斜砌楔紧;
2)当填充墙有洞口时,宜在窗洞口的上端或下端、门洞口的上端设置钢筋混凝土带,钢筋混凝土带应与过梁的混凝土同时浇筑,其过梁的断面及配筋由设计确定。钢筋混凝土带的混凝土强度等级不小于C20。当有洞口的填充墙尽端至门窗洞口边距离小于240mm时,宜采用钢筋混凝土门窗框;
3)填充墙长度超过5m或墙长大于2倍层高时,墙顶与梁宜有拉接措施,墙体中部应加设构造柱;墙高度超过4m时宜在墙高中部设置与柱连接的水平系梁,墙高超过6m时,宜沿墙高每2m设置与柱连接的水平系梁,梁的截面高度不小于60mm。
条文说明
6.3 框架填充墙
6.3.1
本条系新增加内容。主要基于以往历次大地震,尤其是汶川地震的震害情况表明,框架(含框剪)结构填充墙等非结构构件均遭到不同程度破坏,有的损害甚至超出了主体结构,导致不必要的经济损失,尤其高级装饰条件下的高层建筑的损失更为严重。同样也曾发生过受较大水平风荷载作用而导则墙体毁坏并殃及地面建筑、行人的案例。这种现象应引起人们的广泛关注,防止或减轻该类墙体震害及强风作用的有效设计方法和构造措施已成为工程界的急需和共识。
现行国家标准《建筑抗震设计规范》GB 50011已对属非结构构件的框架填充墙的地震作用的计算有详细规定,本规范不再列出。
6.3.3
1
填充墙选用轻质砌体材料可减轻结构重量、降低造价、有利于结构抗震;
2
填充墙体材料强度等级不应过低,否则,当框架稍有变形时,填充墙体就可能开裂,在意外荷载或烈度不高的地震作用时,容易遭到损坏,甚至造成人员伤亡和财产损失;
4
目前有些企业自行研制、开发了夹心复合砌块,即两叶薄型混凝土砌块中间夹有保温层(如EPS、XPS等),并将其用于框架结构的填充墙。虽然墙的整体宽度一般均大于90mm,但每片混凝土薄块仅为30mm~40mm。由于保温夹层较软,不能对混凝土块构成有效的侧限,因此当混凝土梁(板)变形并压紧墙时,单叶墙会因高厚比过大而出现失稳崩坏,故内外叶间必须有可靠的拉结。
6.3.4
震害经验表明:嵌砌在框架和梁中间的填充墙砌体,当强度和刚度较大,在地震发生时,产生的水平地震作用力,将会顶推框架梁柱,易造成柱节点处的破坏,所以强度过高的填充墙并不完全有利于框架结构的抗震。本条规定填充墙与框架柱、梁连接处构造,可根据设计要求采用脱开或不脱开的方法。
1
填充墙与框架柱、梁脱开是为了减小地震时填充墙对框架梁、柱的顶推作用,避免混凝土框架的损坏。本条除规定了填充墙与框架柱、梁脱开间隙的构造要求,同时为保证填充墙平面外的稳定性,规定了在填充墙两端的梁、板底及柱(墙)侧增设卡口铁件的要求。
需指出的是,设于填充墙内的构造柱施工时,不需预留马牙槎。柱顶预留的不小于15mm的缝隙,则为了防止楼板(梁)受弯变形后对柱的挤压。
2
本款为填充墙与框架采用不脱开的方法时的相应的作法。
调查表明,由于混凝土柱(墙)深入填充墙的拉结钢筋断于同一截面位置,当墙体发生竖向变形时,该部位常常产生裂缝。故本次修订规定埋入填充墙内的拉结筋应错开截断。
6.4.1 夹心墙的夹层厚度,不宜大于120mm。
6.4.2 外叶墙的砖及混凝土砌块的强度等级,不应低于MU10。
6.4.3 夹心墙的有效面积,应取承重或主叶墙的面积。高厚比验算时,夹心墙的有效厚度,按下式计算:
(6.4.3)
式中:hl——夹心复合墙的有效厚度;
h1、h2——分别为内、外叶墙的厚度。
6. 4.4 夹心墙外叶墙的最大横向支承间距,宜按下列规定采用:
设防烈度为6度时不宜大于9m,7度时不宜大于6m,8、9度时不宜大于3m。
6. 4.5 夹心墙的内、外叶墙,应由拉结件可靠拉结,拉结件宜符合下列规定:
1
当采用环形拉结件时,钢筋直径不应小于4mm,当为Z形拉结件时,钢筋直径不应小于6mm;拉结件应沿竖向梅花形布置,拉结件的水平和竖向最大间距分别不宜大于800mm和600mm;对有振动或有抗震设防要求时,其水平和竖向最大间距分别不宜大于800mm和400mm;
2 当采用可调拉结件时,钢筋直径不应小于4mm,拉结件的水平和竖向最大间距均不宜大于400mm。叶墙间灰缝的高差不大于3mm,
可调拉结件中孔眼和扣钉间的公差不大于1.5mm;
3
当采用钢筋网片作拉结件时,网片横向钢筋的直径不应小于4mm;其间距不应大于400mm;网片的竖向间距不宜大于600mm;对有振动或有抗震设防要求时,不宜大于400mm;
4 拉结件在叶墙上的搁置长度,不应小于叶墙厚度的2/3,并不应小于60mm;
5
门窗洞口周边300mm范围内应附加间距不大于600mm的拉结件。
6.4.6 夹心墙拉结件或网片的选择与设置,应符合下列规定:
1
夹心墙宜用不锈钢拉结件。拉结件用钢筋制作或采用钢筋网片时,应先进行防腐处理,并应符合本规范4. 3的有关规定;
2
非抗震设防地区的多层房屋,或风荷载较小地区的高层的夹芯墙可采用环形或Z形拉结件;风荷载较大地区的高层建筑房屋宜采用焊接钢筋网片;
3
抗震设防地区的砌体房屋(含高层建筑房屋)夹心墙应采用焊接钢筋网作为拉结件。焊接网应沿夹心墙连续通长设置,外叶墙至少有一根纵向钢筋。钢筋网片可计入内叶墙的配筋率,其搭接与锚固长度应符合有关规范的规定;
4 可调节拉结件宜用于多层房屋的夹心墙,其竖向和水平间距均不应大于400mm。
条文说明
6.4 夹心墙
为适应我国建筑节能要求,作为高效节能墙体的多叶墙,即夹心墙的设计,在这次修编中,根据我国的试验并参照国外规范的有关规定新增加的一节。2001规范将“夹心墙”定名为“夹芯墙,为了与国家标准《墙体材料应用统一技术规范》GB 50574及相关标准相一致,本次修订改为夹心墙。
6.4. 1 通过必要的验证性试验,本次修订将2001规范规定的夹心墙的夹层厚度不宜大于100mm改为120mm,扩大了适用范围,也为夹心墙内设置空气间层提供了方便。
6.4.2 夹心墙的外叶墙处于环境恶劣的室外,当采用低强度的外叶墙时,易因劣化、脱落而毁物伤人。故对其块体材料的强度提出了较高的要求,本条为强制性条文,应严格执行。
6.4.5 我国的一些科研单位,如中国建筑科学研究院、哈尔滨建筑大学、湖南大学、南京工业大学等先后作了一定数量的夹心墙的静、动力试验(包括钢筋拉结和丁砖拉结等构造方案),并提出了相应的构造措施和计算方法。试验表明,在竖向荷载作用下,拉结件能协调内、外叶墙的变形,夹心墙通过拉结件为内叶墙提供了一定的支持作用,提高了内叶墙的承载力和增加了叶墙的稳定性,在往复荷载作用下,钢筋拉结件能在大变形情况下防止外叶墙失稳破坏,内外叶墙变形协调,共同工作。因此钢筋拉结件对防止已开裂墙体在地震作用下不致脱落、倒塌有重要作用。另外不同拉接方案对比试验表明,采用钢筋拉结件的夹心墙片,不仅破坏较轻,并且其变形能力和承载能力的发挥也较好。本次修订引入了国外应用较为普遍的可调拉结件,这种拉结件预埋在夹心墙内、外叶墙的灰缝内,利用可调节特性,消除内外叶墙因竖向变形不一致而产生的不利影响,宜采用。
6.4.6 叶墙的拉结件或钢筋网片采用热镀锌进行防腐处理时,其镀层厚度不应小于290g/m2。采用其他材料涂层应具有等效防腐性能。
6.5.1 在正常使用条件下,应在墙体中设置伸缩缝。伸缩缝应设在因温度和收缩变形引起应力集中、砌体产生裂缝可能性最大处。伸缩缝的间距可按表6.5. 1采用。
表6.5.1 砌体房屋伸缩缝的最大间距(m)
注:1
对烧结普通砖、烧结多孔砖、配筋砌块砌体房屋,取表中数值;对石砌体、蒸压灰砂普通砖、蒸压粉煤灰普通砖、混凝土砌块、混凝土普通砖和混凝土多孔砖房屋,取表中数值乘以0.8的系数,当墙体有可靠外保温措施时,其间距可取表中数值;
2 在钢筋混凝土屋面上挂瓦的屋盖应按钢筋混凝土屋盖采用;
3
层高大于5m的烧结普通砖、烧结多孔砖,配筋砌块砌体结构单层房屋,其伸缩缝间距可按表中数值乘以1.3;
4
温差较大且变化频繁地区和严寒地区不采暖的房屋及构筑物墙体的伸缩缝的最大间距,应按表中数值予以适当减小;
5
墙体的伸缩缝应与结构的其他变形缝相重合,缝宽度应满足各种变形缝的变形要求;在进行立面处理时,必须保证缝隙的变形作用。
6.5.2 房屋顶层墙体,宜根据情况采取下列措施:
1
屋面应设置保温、隔热层;
2
屋面保温(隔热)层或屋面刚性面层及砂浆找平层应设置分隔缝,分隔缝间距不宜大于6m,其缝宽不小于30mm,并与女儿墙隔开;
3
采用装配式有檩体系钢筋混凝土屋盖和瓦材屋盖;
4
顶层屋面板下设置现浇钢筋混凝土圈梁,并沿内外墙拉通,房屋两端圈梁下的墙体内宜设置水平钢筋;
5
顶层墙体有门窗等洞口时,在过梁上的水平灰缝内设置2~3道焊接钢筋网片或2根直径6mm钢筋,焊接钢筋网片或钢筋应伸入洞口两端墙内不小于600mm;
6 顶层及女儿墙砂浆强度等级不低于M7.5(Mb7.5、Ms7.5);
7
女儿墙应设置构造柱,构造柱间距不宜大于4m,构造柱应伸至女儿墙顶并与现浇钢筋混凝土压顶整浇在一起;
8
对顶层墙体施加竖向预应力。
6.5.3 房屋底层墙体,宜根据情况采取下列措施:
1
增大基础圈梁的刚度;
2
在底层的窗台下墙体灰缝内设置3道焊接钢筋网片或2根直径6mm钢筋,并应伸入两边窗间墙内不小于600mm。
6.5.4 在每层门、窗过梁上方的水平灰缝内及窗台下第一和第二道水平灰缝内,宜设置焊接钢筋网片或2根直径6mm钢筋,焊接钢筋网片或钢筋应伸入两边窗间墙内不小于600mm。当墙长大于5m时,宜在每层墙高度中部设置2~3道焊接钢筋网片或3根直径6mm的通长水平钢筋,竖向间距为500mm。
6.5.5 房屋两端和底层第一、第二开间门窗洞处,可采取下列措施:
1
在门窗洞口两边墙体的水平灰缝中,设置长度不小于900mm、竖向间距为400mm的2根直径4mm的焊接钢筋网片。
2
在顶层和底层设置通长钢筋混凝土窗台梁,窗台梁高宜为块材高度的模数,梁内纵筋不少于4根,直径不小于10mm,箍筋直径不小于6mm,间距不大于200mm,混凝土强度等级不低于C20。
3
在混凝土砌块房屋门窗洞口两侧不少于一个孔洞中设置直径不小于12mm的竖向钢筋,竖向钢筋应在楼层圈梁或基础内锚固,孔洞用不低于Cb20混凝土灌实。
6.5.6 填充墙砌体与梁、柱或混凝土墙体结合的界面处(包括内、外墙),宜在粉刷前设置钢丝网片,网片宽度可取400mm,并沿界面缝两侧各延伸200mm,或采取其他有效的防裂、盖缝措施。
6.5.7 当房屋刚度较大时,可在窗台下或窗台角处墙体内、在墙体高度或厚度突然变化处设置竖向控制缝。竖向控制缝宽度不宜小于25mm,缝内填以压缩性能好的填充材料,且外部用密封材料密封,并采用不吸水的、闭孔发泡聚乙烯实心圆棒(背衬)作为密封膏的隔离物(图6.5.7)。
图6.5.7
控制缝构造
1—不吸水的、闭孔发泡聚乙烯实心圆棒;2—柔软、可压缩的填充物
6.5.8 夹心复合墙的外叶墙宜在建筑墙体适当部位设置控制缝,其间距宜为6m~8m。
条文说明
6.5 防止或减轻墙体开裂的主要措施
6.5.1
为防止墙体房屋因长度过大由于温差和砌体干缩引起墙体产生竖向整体裂缝,规定了伸缩缝的最大间距。考虑到石砌体、灰砂砖和混凝土砌块与砌体材料性能的差异,根据国内外有关资料和工程实践经验对上述砌体伸缩缝的最大间距予以折减。
按表6.5. 1设置的墙体伸缩缝,一般不能同时防止由于钢筋混凝土屋盖的温度变形和砌体干缩变形引起的墙体局部裂缝。
6.5.2
1
屋面设置保温、隔热层的规定不仅适用与设计,也适用于施工阶段,调查发现,一些砌体结构工程的混凝土屋面由于未对板材采取应有的防晒(冻)措施,混凝土构件在裸露环境下所产生的温度应力将顶层墙体拉裂现象,故也应对施工期的混凝土屋盖应采取临时的保温、隔热措施。
2~8
为了防止和减轻由于钢筋混凝土屋盖的温度变化和砌体干缩变形以及其他原因引起的墙体裂缝,本次修编将国内外比较成熟的一些措施列出,使用者可根据自己的具体情况选用。
对顶层墙体施加预应力的具体方法和构造措施如下:
①在顶层端开间纵墙墙体布置后张无粘结预应力钢筋,预应力钢筋可采用热轧HRB400钢筋,间距宜为400mm~600mm,直径宜为16mm~18mm,预应力钢筋的张拉控制应力宜为0.50~0.65fyk,在墙体内产生0.35MPa~0.55MPa的有效压应力,预应力总损失可取25%;
②采用后张法施加预应力,预应力钢筋可采用扭矩扳手或液压千斤顶张拉,扭矩扳手使用前需进行标定,施加预应力时,砌体抗压强度及混凝土立方体抗压强度不宜低于设计值的80%;
③预应力钢筋下端(固定端)可以锚固于下层楼面圈梁内,锚固长度不宜小于30d,预应力钢筋上端(张拉端)可采用螺丝端杆锚具锚固于屋面圈梁上,屋面圈梁应进行局部承压验算;
④预应力钢筋应采取可靠的防锈措施,可直接在钢筋表面涂刷防腐涂料、包缠防腐材料等措施。
防止墙体裂缝的措施尚在不断总结和深化,故不限于所列方法。当有实践经验时,也可采用其他措施。
6. 5.4 本条原是考虑到蒸压灰砂砖、混凝土砌块和其他非烧结砖砌体的干缩变形较大,当实体墙长超过5m时,往往在墙体中部出现两端小、中间大的竖向收缩裂缝,为防止或减轻这类裂缝的出现,而提出的一条措施。该项措施也适合于其他墙体材料设计时参考使用,因此此次修编,去掉了墙体材料的限制。
6.5.5 本条原是根据混凝土砌块房屋在这些部位易出现裂缝,并参照一些工程设计经验和标通图,提出的有关措施。该项措施也可供其他墙体材料设计时参考使用,因此此次修编,去掉了混凝土砌块房屋的限制。
6.5.6 由于填充墙与框架柱、梁的缝隙采用了聚苯乙烯泡沫塑料板条或聚氨酯发泡材料充填,且用硅酮胶或其他弹性密封材料封缝,为防止该部位裂缝的显现,亦采用耐久、耐看的缝隙装饰条进行建筑构造处理。
6.5.7 关于控制缝的概念主要引自欧、美规范和工程实践。它主要针对高收缩率砌体材料。如非烧结砖和混凝土砌块,其干缩率为0.2mm/m~0.4mm/m,是烧结砖的2~3倍。因此按对待烧结砖砌体结构的温度区段和抗裂措施是远远不够的。在本规范6.2节的不少条的措施是针对这个问题的,亦显然是不完备的。按照欧美规范,如英国规范规定,对黏土砖砌体的控制间距为10m~15m,对混凝土砌块和硅酸盐砖(本规范指的是蒸压灰砂砖、粉煤灰砖等)砌体一般不应大于6m;美国混凝土协会(ACI)规定,无筋砌体的最大控制缝间距为12m~18m,配筋砌体的控制缝不超过30m。这远远超过我国砌体规范温度区段的间距。这也是按本规范的温度区段和有关抗裂构造措施不能消除在砌体房屋中裂缝的一个重要原因。控制缝是根据砌体材料的干缩特性,把较长的砌体房屋的墙体划分成若干个较小的区段,使砌体因温度、干缩变形引起的应力或裂缝很小,而达到可以控制的地步,故称控制缝(control joint)。控制缝为单墙设缝,不同我国普遍采用的双墙温度缝。该缝沿墙长方向能自己伸缩,而在墙体出平面则能承受一定的水平力。因此该缝材料还对防水密封有一定要求。关于在房屋纵墙上,按本条规定设缝的理论分析是这样的;房屋墙体刚度变化、高度变化均会引起变形突变,正是裂缝的多发处,而在这些位置设置控制缝就解决了这个问题,但随之提出的问题是,留控制缝后对砌体房屋的整体刚度有何影响,特别是对房屋的抗震影响如何,是个值得关注的问题。哈尔滨工业大学对一般七层砌体住宅,在顶层按10m左右在纵墙的门或窗洞部位设置控制缝进行了抗震分析,其结沦是:控制缝引起的墙体刚度降低很小,至少在低烈度区,如不大于7度情况下,是安全可靠的。控制缝在我国因系新作法,在实施上需结合工程情况设置控制缝和适合的嵌缝材料。这方面的材料可参见《现代砌体结构—全国砌体结构学术会议论文集》(中国建筑工业出版社2000)。本条控制缝宽度取值是参照美国规范ACI 530.1—05/ASCE 6—05/TMS 602—05的规定。
6.5.8 根据夹心墙热效应及叶墙间的变形性差异(内叶墙受到外叶墙保护、内、外叶墙间变形不同)使外叶墙更易产生裂缝的特点,规定了这种墙体设置控制缝的间距。
7.1 圈梁
7.2 过梁
7.3 墙梁
7.4
挑梁
7.1.1 对于有地基不均匀沉降或较大振动荷载的房屋,可按本节规定在砌体墙中设置现浇混凝土圈梁。
7.1.2 厂房、仓库、食堂等空旷单层房屋应按下列规定设置圈梁:
1
砖砌体结构房屋,檐口标高为5m~8m时,应在檐口标高处设置圈梁一道;檐口标高大于8m时,应增加设置数量;
2
砌块及料石砌体结构房屋,檐口标高为4m~5m时,应在檐口标高处设置圈梁一道;檐口标高大于5m时,应增加设置数量;
3
对有吊车或较大振动设备的单层工业房屋,当未采取有效的隔振措施时,除在檐口或窗顶标高处设置现浇混凝土圈梁外,尚应增加设置数量。
7.1.3 住宅、办公楼等多层砌体结构民用房屋,且层数为3层~4层时,应在底层和檐口标高处各设置一道圈梁。当层数超过4层时,除应在底层和檐口标高处各设置一道圈梁外,至少应在所有纵、横墙上隔层设置。多层砌体工业房屋,应每层设置现浇混凝土圈梁。设置墙梁的多层砌体结构房屋,应在托梁、墙梁顶面和檐口标高处设置现浇钢筋混凝土圈梁。
7.1.4 建筑在软弱地基或不均匀地基上的砌体结构房屋,除按本节规定设置圈梁外,尚应符合现行国家标准《建筑地基基础设计规范》GB 50007的有关规定。
7.1.5 圈梁应符合下列构造要求:
1
圈梁宜连续地设在同一水平面上,并形成封闭状;当圈梁被门窗洞口截断时,应在洞口上部增设相同截面的附加圈梁。附加圈梁与圈梁的搭接长度不应小于其中到中垂直间距的2倍,且不得小于1m;
2 纵、横墙交接处的圈梁应可靠连接。刚弹性和弹性方案房屋,圈梁应与屋架、大梁等构件可靠连接;
3
混凝土圈梁的宽度宜与墙厚相同,当墙厚不小于240mm时,其宽度不宜小于墙厚的2/3。圈梁高度不应小于120mm。纵向钢筋数量不应少于4根,直径不应小于10mm,绑扎接头的搭接长度按受拉钢筋考虑,箍筋间距不应大于300mm;
4 圈梁兼作过梁时,过梁部分的钢筋应按计算面积另行增配。
7.1.6 采用现浇混凝土楼(屋)盖的多层砌体结构房屋。当层数超过5层时,除应在檐口标高处设置一道圈梁外,可隔层设置圈梁,并应与楼(屋)面板一起现浇。未设置圈梁的楼面板嵌入墙内的长度不应小于120mm,并沿墙长配置不少于2根直径为10mm的纵向钢筋。
条文说明
7.1 圈梁
7.1.2、7.1.3 该两条所表述的圈梁设置涉及砌体结构的安全,故将其定为强制性条文。根据近年来工程反馈信息和住房商品化对房屋质量要求的不断提高,加强了多层砌体房屋圈梁的设置和构造。这有助于提高砌体房屋的整体性、抗震和抗倒塌能力。
7.1.6 由于预制混凝土楼、屋盖普遍存在裂缝,许多地区采用了现浇混凝土楼板,为此提出了本条的规定。
7.2.1 对有较大振动荷载或可能产生不均匀沉降的房屋,应采用混凝土过梁。当过梁的跨度不大于1.5m时,可采用钢筋砖过梁;不大于1.2m时,可采用砖砌平拱过梁。
7.2.2 过梁的荷载,应按下列规定采用:
1
对砖和砌块砌体,当梁、板下的墙体高度hw小于过梁的净跨ln时,过梁应计入梁、板传来的荷载,否则可不考虑梁、板荷载;
2
对砖砌体,当过梁上的墙体高度hw小于ln/3时,墙体荷载应按墙体的均布自重采用,否则应按高度为ln/3墙体的均布自重来采用;
3
对砌块砌体,当过梁上的墙体高度hw小于ln/2时,墙体荷载应按墙体的均布自重采用,否则应按高度为ln/2墙体的均布自重采用。
7.2.3 过梁的计算,宜符合下列规定:
1
砖砌平拱受弯和受剪承载力,可按5.4.1条和5.4.2条计算;
2
钢筋砖过梁的受弯承载力可按式(7.2.3)计算,受剪承载力,可按本规范第5.4.2条计算;
M≤0.85h0fyAs (7.2.3)
式中:M——按简支梁计算的跨中弯矩设计值;
h0——过梁截面的有效高度,h0=h—as;
as——受拉钢筋重心至截面下边缘的距离;
h——过梁的截面计算高度,取过梁底面以上的墙体高度,但不大于ln/3;当考虑梁、板传来的荷载时,则按梁、板下的高度采用;
fy——钢筋的抗拉强度设计值;
As——受拉钢筋的截面面积。
3
混凝土过梁的承载力,应按混凝土受弯构件计算。验算过梁下砌体局部受压承载力时,可不考虑上层荷载的影响;梁端底面压应力图形完整系数可取1.0,梁端有效支承长度可取实际支承长度,但不应大于墙厚。
. 砖砌过梁的构造,应符合下列规定:
1
砖砌过梁截面计算高度内的砂浆不宜低于M5(Mb5、Ms5);
2 砖砌平拱用竖砖砌筑部分的高度不应小于240mm;
3
钢筋砖过梁底面砂浆层处的钢筋,其直径不应小于5mm,间距不宜大于120mm,钢筋伸入支座砌体内的长度不宜小于240mm,砂浆层的厚度不宜小于30mm。
条文说明
7.2 过梁
7.2.1 本条强调过梁宜采用钢筋混凝土过梁。
7.2.3 砌有一定高度墙体的钢筋混凝土过梁按受弯构件计算严格说是不合理的。试验表明过梁也是偏拉构件。过梁与墙梁并无明确分界定义,主要差别在于过梁支承于平行的墙体上,且支承长度较长;一般跨度较小,承受的梁板荷载较小。当过梁跨度较大或承受较大梁板荷载时,应按墙梁设计。
7.3.1 承重与自承重简支墙梁、连续墙梁和框支墙梁的设计,应符合本节规定。
7.3.2
采用烧结普通砖砌体、混凝土普通砖砌体、混凝土多孔砖砌体和混凝土砌块砌体的墙梁设计应符合下列规定:
1
墙梁设计应符合表7.3.2的规定:
表7.3.2 墙梁的一般规定
注:墙体总高度指托梁顶面到檐口的高度,带阁楼的坡屋面应算到山尖墙1/2高度处。
2
墙梁计算高度范围内每跨允许设置一个洞口,洞口高度,对窗洞取洞顶至托梁顶面距离。对自承重墙梁,洞口至边支座中心的距离不应小于0.1m,门窗洞上口至墙顶的距离不应小于0.5m。
3
洞口边缘至支座中心的距离,距边支座不应小于墙梁计算跨度的0.15倍,距中支座不应小于墙梁计算跨度的0.07倍。托梁支座处上部墙体设置混凝土构造柱、且构造柱边缘至洞口边缘的距离不小于240mm时,洞口边至支座中心距离的限值可不受本规定限制。
4
托梁高跨比,对无洞口墙梁不宜大于1/7,对靠近支座有洞口的墙梁不宜大于1/6。配筋砌块砌体墙梁的托梁高跨比可适当放宽,但不宜小于1/14;当墙梁结构中的墙体均为配筋砌块砌体时,墙体总高度可不受本规定限制。
7.3.3 墙梁的计算简图,应按图7.3.3采用。各计算参数应符合下列规定:
1
墙梁计算跨度,对简支墙梁和连续墙梁取净跨的1.1倍或支座中心线距离的较小值;框支墙梁支座中心线距离,取框架柱轴线间的距离;
2
墙体计算高度,取托梁顶面上一层墙体(包括顶梁)高度,当hw大于l0时,取hw等于l0(对连续墙梁和多跨框支墙梁,l0取各跨的平均值);
3
墙梁跨中截面计算高度,取H0=hw+0.5hb;
4
翼墙计算宽度,取窗间墙宽度或横墙间距的2/3,且每边不大于3.5倍的墙体厚度和墙梁计算跨度的1/6;
5
框架柱计算高度,取Hc=Hcn+0.5hb;Hcn为框架柱的净高,取基础顶面至托梁底面的距离。
图7.3.3 墙梁计算简图
l0(l0i)—墙梁计算跨度;hw—墙体计算高度;
h—墙体厚度:H0—墙梁跨中截面计算高度;
bfl—冀墙计算宽度;Hc—框架柱计算高度;
bhi—洞口宽度;hhi—洞口高度;
ai—洞口边缘至支座中心的距离;
Q1、F1—承重墙梁的托梁顶面的荷载设计值;
Q2—承重墙梁的墙梁顶面的荷载设计值
7.3.4 墙梁的计算荷载,应按下列规定采用:
1
使用阶段墙梁上的荷载,应按下列规定采用:
1)承重墙梁的托梁顶面的荷载设计值,取托梁自重及本层楼盖的恒荷载和活荷载;
2)承重墙梁的墙梁顶面的荷载设计值,取托梁以上各层墙体自重,以及墙梁顶面以上各层楼(屋)盖的恒荷载和活荷载;集中荷载可沿作用的跨度近似化为均布荷载;
3)自承重墙梁的墙梁顶面的荷载设计值,取托梁自重及托梁以上墙体自重。
2 施工阶段托梁上的荷载,应按下列规定采用:
1)托梁自重及本层楼盖的恒荷载;
2)本层楼盖的施工荷载;
3)墙体自重,可取高度为10max/3的墙体自重,开洞时尚应按洞顶以下实际分布的墙体自重复核;10max为各计算跨度的最大值。
7.3.5 墙梁应分别进行托梁使用阶段正截面承载力和斜截面受剪承载力计算、墙体受剪承载力和托梁支座上部砌体局部受压承载力计算,以及施工阶段托梁承载力验算。自承重墙梁可不验算墙体受剪承载力和砌体局部受压承载力。
7.3.6 墙梁的托梁正截面承载力,应按下列规定计算:
1
托梁跨中截面应按混凝土偏心受拉构件计算,第i跨跨中最大弯矩设计值Mbi及轴心拉力设计值Nbti可按下列公式计算:
Mbi=Mli+αMM2i
(7.3.6-1)
Nbti=ηN(M2i/H0) (7.3.6-2)
1)当为简支墙梁时:
αM=ψ
M[1.7(hb/l0)—0.03] (7.3.6-3)
ψ M=4.5—10(a/l0) (7.3.6-4)
ηN=0.44+2.1(hw/l0)
(7.3.6-5)
2)当为连续墙梁和框支墙梁时:
αM=ψ
M[2.7(hb/l0i)—0.08] (7.3.6-6)
ψ
M=3.8—8.0(ai/l0i)(7.3.6-7)
ηN=0.8+2.6(hw/l0i)(7.3.6-8)
式中:M1i——荷载设计值Q1、F1作用下的简支梁跨中弯矩或按连续梁、框架分析的托梁第i跨跨中最大弯矩;
M2i——荷载设计值Q2作用下的简支梁跨中弯矩或按连续梁、框架分析的托梁第i跨跨中最大弯矩;
αM——考虑墙梁组合作用的托梁跨中截面弯矩系数,可按公式(7.3.6-3)或(7.3.6-6)计算,但对自承重简支墙梁应乘以折减系数0.8;当公式(7.3.6-3)中的hb/l0>1/6时,取hb/l0=1/6;当公式(7.3.6-3)中的hb/l0i>1/7时,取hb/l0i=1/7;当αM>1.0时,取αM=1.0;
ηN——考虑墙梁组合作用的托梁跨中截面轴力系数,可按公式(7.3.6-5)或(7.3.6-8)计算,但对自承重简支墙梁应乘以折减系数0.8;当hw/l0i>1时,取hw/l0i=1;
ψM——洞口对托梁跨中截面弯矩的影响系数,对无洞口墙梁取1.0,对有洞口墙梁可按公式(7.3.6-4)或(7.3.6-7)计算;
ai——洞口边缘至墙梁最近支座中心的距离,当ai>0.35l0i时,取ai=0.35l0i。
2
托梁支座截面应按混凝土受弯构件计算,第j支座的弯矩设计值Mbj可按下列公式计算:
Mbj=M1j+αMM2j
(7.3.6-9)
αM=0.75—(ai/l0i) (7.3.6-10)
式中:M1j——荷载设计值Q1、F1作用下按连续梁或框架分析的托梁第j支座截面的弯矩设计值;
M2j——荷载设计值Q2作用下按连续梁或框架分析的托梁 第j支座截面的弯矩设计值;
αM——考虑墙梁组合作用的托梁支座截面弯矩系数,无洞口墙梁取0.4,有洞口墙梁可按公式(7.3. 6-10)计算。
7.3.7 对多跨框支墙梁的框支边柱,当柱的轴向压力增大对承载力不利时,在墙梁荷载设计值Q2作用下的轴向压力值应乘以修正系数1.2。
7.3.8 墙梁的托梁斜截面受剪承载力应按混凝土受弯构件计算,第j支座边缘截面的剪力设计值Vbj,可按下式计算:
Vbj=V1j+βvV2j (7.3.8)
式中:V1j——荷载设计值Q1、F1作用下按简支梁、连续梁或框架分析的托梁第j支座边缘截面剪力设计值;
V2j——荷载设计值Q2作用下按简支梁、连续梁或框架分析的托梁第j支座边缘截面剪力设计值;
βv——考虑墙梁组合作用的托梁剪力系数,无洞口墙梁边支座截面取0.6,中间支座截面取0.7;有洞口墙梁边支座截面取0.7,中间支座截面取0.8;对自承重墙梁,无洞口时取0.45,有洞口时取0.5。
7.3.9 墙梁的墙体受剪承载力,应按公式(7.3.9)验算,当墙梁支座处墙体中设置上、下贯通的落地混凝土构造柱,且其截面不小于240mm×240mm时,可不验算墙梁的墙体受剪承载力。
V2≤ξ1ξ2[0.2+(hb/l0i)+(ht/l0i)]fhhw (7.3.9)
式中:V2——在荷载设计值Q2作用下墙梁支座边缘截面剪力的最大值;
ξ1——翼墙影响系数,对单层墙梁取1.0,对多层墙梁,当bf/h=3时取1.3,当bf/h=7时取1.5,当3<bf/h<7时,按线性插入取值;
ξ2——洞口影响系数,无洞口墙梁取1.0,多层有洞口墙梁取0.9,单层有洞口墙梁取0.6;
ht——墙梁顶面圈梁截面高度。
7.3.10 托梁支座上部砌体局部受压承载力,应按公式(7.3.10-1)验算,当墙梁的墙体中设置上、下贯通的落地混凝土构造柱,且其截面不小于240mm×240mm时,或当bf/h大于等于5时,可不验算托梁支座上部砌体局部受压承载力。
Q2≤ξfh
(7.3.10-1)
ξ=0.25+0.08(bf/h) (7.3.10-2)
式中:ξ——局压系数。
7.3.11 托梁应按混凝土受弯构件进行施工阶段的受弯、受剪承载力验算,作用在托梁上的荷载可按本规范第7.3.4条的规定采用。
7.3.12 墙梁的构造应符合下列规定:
1
托梁和框支柱的混凝土强度等级不应低于C30;
2
承重墙梁的块体强度等级不应低于MU10,计算高度范围内墙体的砂浆强度等级不应低于M10(Mb10);
3
框支墙梁的上部砌体房屋,以及设有承重的简支墙梁或连续墙梁的房屋,应满足刚性方案房屋的要求;
4
墙梁的计算高度范围内的墙体厚度,对砖砌体不应小于240mm,对混凝土砌块砌体不应小于190mm;
5
墙梁洞口上方应设置混凝土过梁,其支承长度不应小于240mm;洞口范围内不应施加集中荷载;
6
承重墙梁的支座处应设置落地翼墙,翼墙厚度,对砖砌体不应小于240mm,对混凝土砌块砌体不应小于190mm,翼墙宽度不应小于墙梁墙体厚度的3倍。并与墙梁墙体同时砌筑。当不能设置翼墙时,应设置落地且上、下贯通的混凝土构造柱;
7 当墙梁墙体在靠近支座1/3跨度范围内开洞时,支座处应设置落地且上、下贯通的混凝土构造柱,并应与每层圈梁连接;
8
墙梁计算高度范围内的墙体,每天可砌筑高度不应超过1.5m,否则,应加设临时支撑;
9
托梁两侧各两个开间的楼盖应采用现浇混凝土楼盖,楼板厚度不应小于120mm,当楼板厚度大于150mm时,应采用双层双向钢筋网,楼板上应少开洞,洞口尺寸大于800mm时应设洞口边梁;
10 托梁每跨底部的纵向受力钢筋应通长设置,不应在跨中弯起或截断;钢筋连接应采用机械连接或焊接;
11
托梁跨中截面的纵向受力钢筋总配筋率不应小于0.6%;
12
托梁上部通长布置的纵向钢筋面积与跨中下部纵向钢筋面积之比值不应小于0.4;连续墙梁或多跨框支墙梁的托梁支座上部附加纵向钢筋从支座边缘算起每边延伸长度不应小于l0/4;
13 承重墙梁的托梁在砌体墙、柱上的支承长度不应小于350mm;纵向受力钢筋伸入支座的长度应符合受拉钢筋的锚固要求;
14
当托梁截面高度hb大于等于450mm时,应沿梁截面高度设置通长水平腰筋,其直径不应小于12mm,间距不应大于200mm;
15
对于洞口偏置的墙梁,其托梁的箍筋加密区范围应延到洞口外,距洞边的距离大于等于托梁截面高度hb(图7.3.
12),箍筋直径不应小于8mm,间距不应大于100mm。
图7.3.12 偏开洞时托梁箍筋加密区
条文说明
7.3 墙梁
7.3.1 本条较原规范的规定更为明确。
7.3.2
墙梁构造限值尺寸,是墙梁构件结构安全的重要保证,本条规定墙梁设计应满足的条件。关于墙体总高度、墙梁跨度的规定,主要根据工程经验。hw/l0i≥0.4(1/3)的规定是为了避免墙体发生斜拉破坏。托梁是墙梁的关键构件。限制hb/l0i不致过小不仅从承载力力方面考虑,而且较大的托梁刚度对改善墙体抗剪性能和托梁支座上部砌体局部受压性能也是有利的,对承重墙梁改为hb/l0i≥1/10。但随着hb/l0i的增大。竖向荷载向跨中分布,而不是向支座集聚,不利于组合作用充分发挥,因此,不应采用过大的hb/l0i。洞宽和洞高限制是为了保证墙体整体性并根据试验情况作出的。偏开洞口对墙梁组合作用发挥是极不利的,洞口外墙肢过小,极易剪坏或被推出破坏,限制洞距ai及采取相应构造措施非常重要。对边支座为ai≥0.15l0i;增加中支座ai≥0.07l0i的规定。此外,国内、外均进行过混凝土砌块砌体和轻质混凝土砌块砌体墙梁试验,表明其受力性能与砖砌体墙梁相似。故采用混凝土砌块砌体墙梁可参照使用。而大开间墙梁模型拟动力试验和深梁试验表明,对称开两个洞的墙梁和偏开一个洞的墙梁受力性能类似。对多层房屋的纵向连续墙梁每跨对称开两个窗洞时也可参照使用。
本次修订主要作了以下修改:
1)近几年来,混凝土普通砖砌体、混凝土多孔砖砌体和混凝土砌块砌体在工程中有较多应用,故增加了由这三种砌体组成的墙梁。
2)对于多层房屋的墙梁,要求洞口设置在相同位置并上、下对齐,工程中很难做到,故取消了此规定。
7.3.3 本条给出与第7.3.1条相应的计算简图。计算跨度取值系根据墙梁为组合深梁,其支座应力分布比较均匀而确定的。墙体计算高度仅取一层层高是偏于安全的,分析表明,当hw>l0时,主要是hw=l0范围内的墙体参与组合作用。H0取值基于轴拉力作用于托梁中心,hf限值系根据试验和弹性分析并偏于安全确定的。
7.3.4 本条分别给出使用阶段和施工阶段的计算荷载取值。承重墙梁在托梁顶面荷载作用下不考虑组合作用,仅在墙梁顶面荷载作用下考虑组合作用。有限元分析及2个两层带翼墙的墙梁试验表明,当bf/l0=0.13~0.3时,在墙梁顶面已有30%~50%上部楼面荷载传至翼墙。墙梁支座处的落地混凝土构造柱同样可以分担35%~65%的楼面荷载。但本条不再考虑上部楼面荷载的折减,仅在墙体受剪和局压计算中考虑翼墙的有利作用,以提高墙梁的可靠度,并简化计算。1~3跨7层框支墙梁的有限元分析表明,墙梁顶面以上各层集中力可按作用的跨度近似化为均布荷载(一般不超过该层该跨荷载的30%),再按本节方法计算墙梁承载力是安全可靠的。
7.3.5 试验表明,墙梁在顶面荷载作用下主要发生三种破坏形态,即:由于跨中或洞口边缘处纵向钢筋屈服,以及由于支座上部纵向钢筋屈服而产生的正截面破坏;墙体或托梁斜截面剪切破坏以及托梁支座上部砌体局部受压破坏。为保证墙梁安全可靠地工作,必须进行本条规定的各项承载力计算。计算分析表明,自承重墙梁可满足墙体受剪承载力和砌体局部受压承载力的要求,无需验算。
7.3.6
试验和有限元分析表明,在墙梁顶面荷载作用下,无洞口简支墙梁正截面破坏发生在跨中截面,托梁处于小偏心受拉状态;有洞口简支墙梁正截面破坏发生在洞口内边缘截面,托梁处于大偏心受拉状态。原规范基于试验结果给出考虑墙梁组合作用,托梁按混凝土偏心受拉构件计算的设计方法及相应公式。其中,内力臂系数γ基于56个无洞口墙梁试验,采用与混凝土深梁类似的形式,γ=0.1(4.5+l0/H0),计算值与试验值比值的平均值μ=0.885,变异系数δ=0.176,具有一定的安全储备,但方法过于繁琐。本规范在无洞口和有洞口简支墙梁有限元分析的基础上,直接给出托梁弯矩和轴力计算公式。既保持考虑墙梁组合作用,托梁按混凝土偏心受拉构件设计的合理模式,又简化了计算,并提高了可靠度。托梁弯矩系数αM计算值与有限元值之比;对无洞口墙梁μ=1.644,δ=0.101;对有洞口墙梁μ=2.705,δ=0.381托梁轴力系数ηN计算值与有限元值之比,μ=1.146,δ=0.023;对有洞口墙梁,μ=1.153,δ=0.262,对于直接作用在托梁顶面的荷载Q1、F1将由托梁单独承受而不考虑墙梁组合作用,这是偏于安全的。
连续墙梁是在21个连续墙梁试验基础上,根据2跨、3跨、4跨和5跨等跨无洞口和有洞口连续墙梁有限元分析提出的。对于跨中截面,直接给出托梁弯矩和轴拉力计算公式,按混凝土偏心受拉构件设计,与简支墙梁托梁的计算模式一致。对于支座截面,有限元分析表明其为大偏心受压构件,忽略轴压力按受弯构计算是偏于安全的。弯矩系数αM是考虑各种因素在通常工程应用的范围变化并取最大值,其安全储备足较大的。在托梁顶面荷载Q1、F1作用下,以及在墙梁顶面荷载Q2作用下均采用一般结构力学方法分析连续托梁内力,计算较简便。
单跨框支墙梁是在9个单跨框支墙梁试验基础上,根据单跨无洞口和有洞口框支墙梁限元分析,对托梁跨中截面直接给出弯距和轴拉力公式,并按混凝土偏心受拉构件计算,也与简支墙梁托梁计算模式一致。框支墙梁在托梁顶面荷载q1,F1和墙梁顶面荷载q2作用下分别采用一般结构力学方法分析框架内力,计算较简便。本规范在19个双跨框支墙梁试验基础上。根据2跨、3跨和4跨无洞口和有洞口框支墙梁有限元分析,对托梁跨中截面也直接给出弯矩和轴拉力按混凝土偏心受拉构件计算,与单跨框支墙梁协调一致。托梁支座截面也按受弯构件计算。
为简化计算,连续墙梁和框支墙梁采用统一的αM和ηN表达式。边跨跨中αM计算值与有限元值之比,对连续墙梁,无洞口时,μ=1.251,δ=0.095,有洞口时,μ=1.302,δ=0.198;对框支墙梁,无洞口时,μ=2.1,δ=0.182,有洞口时,μ=1.615,δ=0.252。ηN计算值与有限元值之比,对连续墙梁,无洞口时,μ=1.129,δ=0.039,有洞口时,μ=1.269,δ=0.181;对框支墙梁,无洞口时,μ=1.047,δ=0.181,有洞口时,μ=0.997,δ=0.135。中支座αM计算值与有限元值之比,对连续墙梁,无洞口时,μ=1.715,δ=0.245,有洞口时,μ=1.826,δ=0.332;对框支墙梁,无洞口时,μ=2.017,δ=0.251。有洞口时,μ=1.844,δ=0.295。
7.3.7 有限元分析表明,多跨框支墙梁存在边柱之间的大拱效应,使边柱轴压力增大,中柱轴压力减少,故在墙梁顶面荷载Q2作用下当边柱轴压力增大不利时应乘以1.2的修正系数。框架柱的弯矩计算不考虑墙梁组合作用。
7.3.8 试验表明,墙梁发生剪切破坏时,一般情况下墙体先于托梁进入极限状态而剪坏。当托梁混凝土强度较低,箍筋较少时,或墙体采用构造框架约束砌体的情况下托梁可能稍后剪坏。故托梁与墙体应分别计算受剪承载力。本规范规定托梁受剪承载力统一按受弯构件计算。剪力系数βV按不同情况取值且有较大提高。因而提高了可靠度,且简化了计算。简支墙梁βV计算值与有限元值之比,对无洞口墙梁μ=1.102,δ=0.078;对有洞口墙梁μ=1.397,δ=0.123。βV计算值与有限元值之比,对连续墙梁边支座,无洞口时μ=1.254、δ=0.135,有洞口时μ=1.404、δ=0.159;中支座,无洞口时μ=1.094、δ=0.062,有洞口时μ=1.098、δ=0.162。对框支墙梁边支座,无洞口时μ=1.693,δ=0.131,有洞口时μ=2.011,δ=0.31;中支座,无洞口时μ=1.588、δ=0.093,有洞口时μ=1.659、δ=0.187。
7.3.9 试验表明:墙梁的墙体剪切破坏发生于hw/l0<0.75~0.80,托梁较强,砌体相对较弱的情况下。当hw/l0<0.35~0.40时发生承载力较低的斜拉破坏,否则,将发生斜压破坏。原规范根据砌体在复合应力状态下的剪切强度。经理论分析得出墙体受剪承载力公式并进行试验验证。并按正交设计方法找出影响显著的因素hb/l0和α/l0;根据试验资料回归分析,给出V2≤ξ2(0.2+hb/l0)hhwf。计算值与47个简支无洞口墙梁试验结果比较,μ=1.062,δ=0.141;与33个简支有洞口墙梁试验结果比较,μ=0.966,δ=0.155。工程实践表明,由于此式给出的承载力较低,往往成为墙梁设计中的控制指标。试验表明,墙梁顶面圈梁(称为顶梁)如同放在砌体上的弹性地基梁,能将楼层荷载部分传至支座,并和托梁一起约束墙体横向变形,延缓和阻滞斜裂缝开展,提高墙体受剪承载力。本规范根据7个设置顶梁的连续墙梁剪切破坏试验结果,给出考虑顶梁作用的墙体受剪承载力公式(7.3.9),计算值与试验值之比,μ=0.844,δ=0.084。工程实践表明,墙梁顶面以上集中荷载占各层荷载比值不大,且经各层传递至墙梁顶面已趋均匀,故将墙梁顶面以上各层集中荷载均除以跨度近似化为均布荷载计算。由于翼墙或构造柱的存在,使多层墙梁楼盖荷载向翼墙或构造柱卸荷而减少墙体剪力,改善墙体受剪性能,故采用翼墙影响系数ξ1。为了简化计算,单层墙梁洞口影响系数ξ2不再采用公式表达,与多层墙梁一样给出定值。
7.3.10 试验表明,当hw/l0>0.75~0.80,且无翼墙,砌体强度较低时,易发生托梁支座上方因竖向正应力集中而引起的砌体局部受压破坏。为保证砌体局部受压承载力,应满足σymaxh≤γfh(σymax为最大竖向压应力,γ为局压强度提高系数)。令C=σymaxh/Q2称为应力集中系数,则上式变为Q2≤γfh/C。令ξ=γ/C,称为局压系数,即得到(7.3.10-1)式。根据16个发生局压破坏的无翼墙墙梁试验结果,ξ=0.31~0.414;若取γ=1.5,C=4,则ξ=0.37。翼墙的存在,使应力集中减少,局部受压有较大改善;当bf/h=2~5时,C=1.33~2.38,ξ=0.475~0.747。则根据试验结果确定(7.3.10-2)式。近年来采用构造框架约束砌体的墙梁试验和有限元分析表明,构造柱对减少应力集中,改善局部受压的作用更明显,应力集中系数可降至1.6左右。计算分析表明,当bf/h≥5或设构造柱时,可不验算砌体局部受压承载力。
7.3.11 墙梁是在托梁上砌筑砌体墙形成的。除应限制计算高度范围内墙体每天的可砌高度。严格进行施工质量控制外,尚应进行托梁在施工荷载作用下的承载力验算,以确保施工安全。
7.3.12
为保证托梁与上部墙体共同工作,保证墙梁组合作用的正常发挥,本条对墙梁基本构造要求作了相应的规定。
本次修订,增加了托梁上部通长布置的纵向钢筋面积与跨中下部纵向钢筋面积之比值不应小于0.4的规定。
7.4.1 砌体墙中混凝土挑梁的抗倾覆,应按下列公式进行验算:
Mov≤Mr(7.4.1)
式中:Mov--挑梁的荷载设计值对计算倾覆点产生的倾覆力矩;
Mr--挑梁的抗倾覆力矩设计值。
7.4.2 挑梁计算倾覆点至墙外边缘的距离可按下列规定采用:
1
当l1不小于2.2hb时(l1为挑梁埋入砌体墙中的长度,hb为挑梁的截面高度),梁计算倾覆点到墙外边缘的距离可按式(7.4.2-1)计算,其结果不应大于0.13l1。
x0=0.3hb(7.4. 2-1)
式中:x0--计算倾覆点至墙外边缘的距离(mm);
2
当l1小于2.2hb时,梁计算倾覆点到墙外边缘的距离可按下式计算:
x0=0.13l1(7.4. 2-2)
3 当挑梁下有混凝土构造柱或垫梁时,计算倾覆点到墙外边缘的距离可取0.5x0。
7.4.3 挑梁的抗倾覆力矩设计值,可按下式计算:
Mr=0. 8Gr(l2-x0) (7.4.3)
式中:Gr--挑梁的抗倾覆荷载,为挑梁尾端上部45°扩展角的阴影范围(其水平长度为l3)内本层的砌体与楼面恒荷载标准值之和(图7.4.3);当上部楼层无挑梁时,抗倾覆荷载中可计及上部楼层的楼面永久荷载;
l2--Gr作用点至墙外边缘的距离。
7.4.4 挑梁下砌体的局部受压承载力,可按下式验算(图7.1.4):
Nl≤ηγfAl (7.4.4)
式中:Nl--挑梁下的支承压力,可取Nl=2R,R为挑梁的倾覆荷载设计值;
η--梁端底面压应力图形的完整系数,可取0.7;
γ--砌体局部抗压强度提高系数,对图7.4.4a,可取1.25;对图7.4.4b可取1.5;
Al--挑梁下砌体局部受压面积,可取Al=1.2bhb,b为挑梁的截面宽度,hb为挑梁的截面高度。
图7.4.3 挑梁的抗倾覆荷载
图7.4.4 挑梁下砌体局部受压
7.4.5 挑梁的最大弯矩设计值Mmax与最大剪力设计值Vmax,可按下列公式计算:
Mmax=M0(7.4.5-1)
Vmax=V0(7.4.5-2)
式中:M0--挑梁的荷载设计值对计算倾覆点截面产生的弯矩;
V0--挑梁的荷载设计值在挑梁墙外边缘处截面产生的剪力。
7.4.6 挑梁设计除应符合现行国家标准《混凝土结构设计规范》GB
50010的有关规定外,尚应满足下列要求:
1 纵向受力钢筋至少应有1/2的钢筋面积伸入梁尾端,且不少于212。其余钢筋伸入支座的长度不应小于2l1/
3;
2 挑梁埋入砌体长度l1与挑出长度l之比宜大于1.2;当挑梁上无砌体时,l1与l之比宜大于2。
7.4.7 雨篷等悬挑构件可按第7.4.1条~7.4.3条进行抗倾覆验算,其抗倾覆荷载Gr可按图7.4.7采用,Gr距墙外边缘的距离为墙厚的1/2,l3为门窗洞口净跨的1/2。
图7.4.7
雨篷的抗倾覆荷载
Gr-抗倾覆荷载;l1-墙厚;l2-Gr距墙外边缘的距离
条文说明
7.4 挑梁
7.4.2 对88规范中规定的计算倾覆点,针对l1≥2.2hb 时的两个公式,经分析采用近似公式(x0=0.3hb),和弹性地基梁公式()相比,当hb=250mm~500mm时,μ=1.051,δ=0.064;并对挑梁下设有构造柱时的计算倾覆点位置作了规定(取0.5x0)。
8.1 网状配筋砖砌体构件
8.2 组合砖砌体构件
条文说明
8 配筋砖砌体构件
本章规定了二类配筋砌体构件的设计方法。第一类为网状配筋砖砌体构件。第二类为组合砖砌体构件,又分为砖砌体和钢筋混凝上面层或钢筋砂浆面层组成的组合砖砌体构件;砖砌体和钢筋混凝土构造柱组成的组合砖墙。
8.1.1 网状配筋砖砌体受压构件,应符合下列规定:
1
偏心距超过截面核心范围(对于矩形截面即e/h>0.17),或构件的高厚比β>16时,不宜采用网状配筋砖砌体构件;
2
对矩形截面构件,当轴向力偏心方向的截面边长大于另一方向的边长时,除按偏心受压计算外,还应对较小边长方向按轴心受压进行验算;
3
当网状配筋砖砌体构件下端与无筋砌体交接时,尚应验算交接处无筋砌体的局部受压承载力。
8.1.2 网状配筋砖砌体(图8.1.2)受压构件的承载力,应按下列公式计算:
N≤φnfnA
(8.1.2-1)
fn=f+2[1—(2e/y)]ρfy (8.1.2-2)
ρ=[(a+b)As]/absn
(8.1.2-3)
式中:N——轴向力设计值;
φn——高厚比和配筋率以及轴向力的偏心距对网状配筋砖砌体受压构件承载力的影响系数,可按附录D.0.2的规定采用;
fn——网状配筋砖砌体的抗压强度设计值;
A——截面面积;
e——轴向力的偏心距;
y——自截面重心至轴向力所在偏心方向截面边缘的距离;
ρ——体积配筋率:
fy——钢筋的抗拉强度设计值,当fy大于320MPa时,仍采用320MPa;
a、b——钢筋网的网格尺寸;
As——钢筋的截面面积;
sn——钢筋网的竖向间距。
图8.1.2 网状配筋砖砌体
8.1.3 网状配筋砖砌体构件的构造应符合下列规定:
1
网状配筋砖砌体中的体积配筋率,不应小于0.1%,并不应大于1%;
2 采用钢筋网时,钢筋的直径宜采用3mm~4mm;
3
钢筋网中钢筋的间距,不应大于120mm,并不应小于30mm;
4 钢筋网的间距,不应大于五皮砖,并不应大于400mm;
5
网状配筋砖砌体所用的砂浆强度等级不应低于M7.5;钢筋网应设置在砌体的水平灰缝中,灰缝厚度应保证钢筋上下至少各有2mm厚的砂浆层。
条文说明
8.1 网状配筋砖砌体构件
8.1.2 原规范中网状配筋砖砌体构件的体积配筋率ρ有配筋百分率[ρ=(Vs/V)100]和配筋率(ρ=Vs/V)两种表述,为避免混淆,方便使用,现统一采用后者,即体积配筋率ρ=Vs/V。由此,网状配筋砖砌体矩形截面单向偏心受压构件承载力的影响系数,改按下式计算:
此外,工程上很少采用连弯钢筋网,因而删去了对连弯钢筋网的规定。
Ⅰ 砖砌体和钢筋混凝土面层或钢筋砂浆面层的组合砌体构件
8.2.1 当轴向力的偏心距超过本规范第5.1.5条规定的限值时,宜采用砖砌体和钢筋混凝土面层或钢筋砂浆面层组成的组合砖砌体构件(图8.2.1)。
图8.2.1
组合砖砌体构件截面
1—混凝土或砂浆;2—拉结钢筋;3—纵向钢筋:4—箍筋
8.2.2 对于砖墙与组合砌体一同砌筑的T形截面构件(图8.2. 1b),其承载力和高厚比可按矩形截面组合砌体构件计算(图8.2.1c)。
8.2.3 组合砖砌体轴心受压构件的承载力,应按下式计算:
N≤φcom(fA+fcAc+ηsf′yA′s) (8.2.3)
式中:φcom——组合砖砌体构件的稳定系数,可按表8. 2.
3采用;
A——砖砌体的截面面积;
fc——混凝土或面层水泥砂浆的轴心抗压强度设计值,砂浆的轴心抗压强度设计值可取为同强度等级混凝土的轴心抗压强度设计值的70%,当砂浆为M15时,取5.0MPa;当砂浆为M10时,取3.4MPa;当砂浆强度为M7.5时,取2.5MPa;
Ac——混凝土或砂浆面层的截面面积;
ηs——受压钢筋的强度系数,当为混凝土面层时,可取1.0;当为砂浆面层时可取0.9;
f′y——钢筋的抗压强度设计值;
A′s——受压钢筋的截面面积。
表8.2.3 组合砖砌体构件的稳定系数φcom
注:组合砖砌体构件截面的配筋率ρ=A′s/bh
8.2.4 组合砖砌体偏心受压构件的承载力,应按下列公式计算:
N≤fA′+fcA′c+ηsf′yA′s —σsAs (8.2.4-1)
或
NeN≤fSs+fcSc,s+ηsf′yA′s(h0—a′s) (8.2.4-2)
此时受压区的高度x可按下列公式确定:
fSN+fcSc,N+ηsf′yA′se′N—σsAseN=0
(8.2.4-3)
eN=e+ea+(h/2—as)(8.2.4-4)
e′N=e+ea—(h/2—a′s)(8.2.4-5)
ea=β2h/2200(1—0.022β)
(8.2.4-6)
式中:A′——砖砌体受压部分的面积;
A′c——混凝土或砂浆面层受压部分的面积;
σs——钢筋As的应力;
As——距轴向力N较远侧钢筋的截面面积;
Ss——砖砌体受压部分的面积对钢筋As重心的面积矩;
Sc,s——混凝土或砂浆面层受压部分的面积对钢筋As重心的面积矩;
SN——砖砌体受压部分的面积对轴向力N作用点的面积矩;
Sc,N——混凝土或砂浆面层受压部分的面积对轴向力N作用点的面积矩;
eN、e′N——
分别为钢筋As和A′s重心至轴向力N作用点的距离(图8.2.4);
e——轴向力的初始偏心距,按荷载设计值计算,当e小于0.05h时,应取e等于0.05h;
ea——组合砖砌体构件在轴向力作用下的附加偏心距;
h0——组合砖砌体构件截面的有效高度,取h0=h—as;
as、a′s——分别为钢筋As和A′s重心至截面较近边的距离。
图8.2.4 组合砖砌体偏心受压构件
8.2.5
组合砖砌体钢筋As的应力σs(单位为MPa,正值为拉应力,负值为压应力)应按下列规定计算:
1 当为小偏心受压,即 ζ>ζb
时,
σs=650—800ζ (8.2.5-1)
2 当为大偏心受压,即ζ≤ζb时,
σs=fy (8.2.5-2)
ζ=x/h0 (8.2.5-3)
式中:σs——
钢筋的应力,当σs>fy时,取σs=fy;当σs<f′y时,取σs=f′y;
ξ——组合砖砌体构件截面的相对受压区高度;
fy——钢筋的抗拉强度设计值。
3
组合砖砌体构件受压区相对高度的界限值ξb,对于HRB400级钢筋,应取0.36;对于HRB335级钢筋,应取0.44;对于HPB300级钢筋,应取0.47。
8.2.6 组合砖砌体构件的构造应符合下列规定:
1
面层混凝土强度等级宜采用C20。面层水泥砂浆强度等级不宜低于M10。砌筑砂浆的强度等级不宜低于M7.5;
2
砂浆面层的厚度,可采用30mm~45mm。当面层厚度大于45mm时,其面层宜采用混凝土;
3
竖向受力钢筋宜采用HPB300级钢筋,对于混凝土面层,亦可采用HRB335级钢筋。受压钢筋一侧的配筋率,对砂浆面层,不宜小于0.1%,对混凝土面层,不宜小于0.2%。受拉钢筋的配筋率,不应小于0.1%。竖向受力钢筋的直径,不应小于8mm,钢筋的净间距,不应小于30mm;
4
箍筋的直径,不宜小于4mm及0.2倍的受压钢筋直径,并不宜大于6mm。箍筋的间距,不应大于20倍受压钢筋的直径及500mm,并不应小于120mm;
5 当组合砖砌体构件一侧的竖向受力钢筋多于4根时,应设置附加箍筋或拉结钢筋;
6
对于截面长短边相差较大的构件如墙体等,应采用穿通墙体的拉结钢筋作为箍筋,同时设置水平分布钢筋。水平分布钢筋的竖向间距及拉结钢筋的水平间距,均不应大于500mm(图8.2.6);
图8.2.6 混凝土或砂浆面层组合墙
1—竖向受力钢筋;2—拉结钢筋;3—水平分布钢筋
7 组合砖砌体构件的顶部和底部,以及牛腿部位,必须设置钢筋混凝土垫块。竖向受力钢筋伸入垫块的长度,必须满足锚固要求。
Ⅱ 砖砌体和钢筋混凝土构造柱组合墙
8.2.7 砖砌体和钢筋混凝土构造柱组合墙(图8.2.7)的轴心受压承载力,应按下列公式计算:
N≤φcom[fA+η(fcAc+f′yA′s)] (8.2.7-1)
(8.2.7-2)
式中:φcom——组合砖墙的稳定系数,可按表8.2.3采用;
η——强度系数,当l/bc小于4时,取l/bc等于4;
l——沿墙长方向构造柱的间距;
bc——沿墙长方向构造柱的宽度;
A——扣除孔洞和构造柱的砖砌体截面面积;
Ac——构造柱的截面面积。
图8.2.7 砖砌体和构造柱组合墙截面
8.2.8
砖砌体和钢筋混凝土构造柱组合墙,平面外的偏心受压承载力,可按下列规定计算:
1 构件的弯矩或偏心距可按本规范第4.
2.5条规定的方法确定;
2
可按本规范第8.2.4条和8.2.5条的规定确定构造柱纵向钢筋,但截面宽度应改为构造柱间距l;大偏心受压时,可不计受压区构造柱混凝土和钢筋的作用,构造柱的计算配筋不应小于第8.2.9条规定的要求。
8.2.9 组合砖墙的材料和构造应符合下列规定:
1
砂浆的强度等级不应低于M5,构造柱的混凝土强度等级不宜低于C20;
2
构造柱的截面尺寸不宜小于240mm×240mm,其厚度不应小于墙厚,边柱、角柱的截面宽度宜适当加大。柱内竖向受力钢筋,对于中柱,钢筋数量不宜少于4根、直径不宜小于12mm;对于边柱、角柱,钢筋数量不宜少于4根、直径不宜小于14mm。构造柱的竖向受力钢筋的直径也不宜大于16mm。其箍筋,一般部位宜采用直径6mm、间距200mm,楼层上下500mm范围内宜采用直径6mm、间距100mm。构造柱的竖向受力钢筋应在基础梁和楼层圈梁中锚固,并应符合受拉钢筋的锚固要求;
3 组合砖墙砌体结构房屋,应在纵横墙交接处、墙端部和较大洞口的洞边设置构造柱,其间距不宜大于4m。各层洞口宜设置在相应位置,并宜上下对齐;
4
组合砖墙砌体结构房屋应在基础顶面、有组合墙的楼层处设置现浇钢筋混凝土圈梁。圈梁的截面高度不宜小于240mm;纵向钢筋数量不宜少于4根、直径不宜小于12mm,纵向钢筋应伸入构造柱内,并应符合受拉钢筋的锚固要求;圈梁的箍筋直径宜采用6mm、间距200mm;
5 砖砌体与构造柱的连接处应砌成马牙槎,并应沿墙高每隔500mm设2根直径6mm的拉结钢筋,且每边伸入墙内不宜小于600mm;
6
构造柱可不单独设置基础,但应伸入室外地坪下500mm,或与埋深小于500mm的基础梁相连;
7
组合砖墙的施工顺序应为先砌墙后浇混凝土构造柱。
条文说明
8.2 组合砖砌体构件
Ⅰ砖砌体和钢筋混凝土面层或钢筋砂浆面层的组合砌体构件
8.2.2 对于砖墙与组合砌体一同砌筑的T形截面构件,通过分析和比较表明,高厚比验算和截面受压承载力均按矩形截面组合砌体构件进行计算是偏于安全的,亦避免了原规范在这两项计算上的不一致。
8.2.3~8.2.5 砖砌体和钢筋混凝土面层或钢筋砂浆面层组合的砌体构件,其受压承载力计算公式的建立,详见88规范的条文说明。本次修订依据《混凝土结构设计规范》GB 50010 中混凝土轴心受压强度设计值,对面层水泥砂浆的轴心抗压强度设计值作了调整;按钢筋强度的取值,对受压区相对高度的界限值,作了相应的补充和调整。
Ⅱ 砖砌体和钢筋混凝土构造柱组合墙
8.2.7 在荷载作用下,由于构造柱和砖墙的刚度不同,以及内力重分布的结果,构造柱分担墙体上的荷载。此外,构造柱与圈梁形成“弱框架”,砌体受到约束,也提高了墙体的承载力。设置构造柱砖墙与组合砖砌体构件有类似之处,湖南大学的试验研究表明。可采用组合砖砌体轴心受压构件承载力的计算公式,但引入强度系数以反映前者与后者的差别。
8.2.8 对于砖砌体和钢筋混凝土构造柱组合墙平面外的偏心受压承载力,本条的规定是—种简化、近似的计算方法且偏于安全。
8.2.9
有限元分析和试验结果表明,设有构造柱的砖墙中,边柱处于偏心受压状态,设计时宜适当增大边柱截面及增大配筋。如可采用240mm×370mm,配4 14钢筋。
在影响设置构造柱砖墙承载力的诸多因素中,柱间距的影响最为显著。理论分析和试验结果表明,对于中间柱,它对柱每侧砌体的影响长度约为1.2m;对于边柱,其影响长度约为1m。构造柱间距为2m左右时,柱的作用得到充分发挥。构造柱间距大于4m时,它对墙体受压承载力的影响很小。
为了保证构造柱与圈梁形成一种“弱框架”,对砖墙产生较大的约束,因而本条对钢筋混凝土圈梁的设置作了较为严格的规定。
9.1 一般规定
9.2 正截面受压承载力计算
9.3
斜截面受剪承载力计算
9.4 配筋砌块砌体剪力墙构造规定